![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:13 、訪客IP:18.218.189.170
姓名 柯淇鏵(Chi-Hua Ko) 查詢紙本館藏 畢業系所 化學工程與材料工程學系 論文名稱 藉由溫度軌跡方法與熔融結晶法來探討可可脂與巧克力的熱性質與晶體成長
(Thermal Properties and Crystal Growth of Cocoa Butter and Chocolate by Temperature History Method and Melt Crystalllization)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 可可脂是組成巧克力的原料之一,是控制巧克力結晶的主要成分,本篇研究目的為藉由溫度軌跡方法來探討可可脂與巧克力的熱性質以及兩種樣品以該方法所產生的結晶型態做比較,將所得的熱性質應用在熔融結晶法的結晶層厚度預測,並同樣分析兩種樣品以熔融結晶法所產生的結晶型態來做研究。在熔融結晶法中我們研究樣品厚度與時間之關係與生長曲線,使用低溫差示掃描量熱法(LT-DSC)測定熔點、平衡狀態以及樣品之吸放熱峰值,並配合X射線衍射(XRD)來測定樣品的多晶型。溫度軌跡方法顯示:可可脂熔點=287.3±0.3 K,液態熱含量=3.46±0.34 kJkg-1K-1,固態熱含量=7.35±1.47 kJkg-1K-1,潛熱=30.1±1.7 kJkg-1K-1 以及固態導熱性=0.173±0.07 Wm-1K-1,而巧克力熔點=290.9±0.3 K,液態熱含量=2.92±0.94 kJkg-1K-1,固態熱含量=6.39±0.52 kJkg-1K-1,潛熱=12.3±2.6 kJkg-1K-1以及固態導熱性=0.215±0.006 Wm-1K-1。而低溫差示掃描量熱法以及X射線衍射顯示了由溫度軌跡方法所得到的可可脂和巧克力結晶型態分別為Form IV和Form V之結晶。熔融結晶法則證明了結晶層會隨著時間的增加而成長,可可脂經由熔融結晶法產生之厚度介於0.05至0.13cm之間且會生成 Form V之結晶,該結晶型態也是生產巧克力最合適的晶型,但經由相同方法所製造出之巧克力之厚度則介於0.46至1.27cm間,在同樣時間下之結晶厚度約為可可脂厚度的十倍,且會產生Form II、Form III和Form V之結晶,我們的系統用於探討熔融結晶法應用在傳統商業巧克力生產上減少退火步驟的可能性。 摘要(英) Cocoa butter is one of the components of chocolate. It is the key factor of affecting the polymorph of chocolate. In this research, we used temperature history method (T-history method) to calculated the thermal properties of cocoa butter and chocolate and compared the polymorph of two samples which made by T-history method. Otherwise, we used the thermal properties which calculated by T-history method to predict the crystal layer thickness of samples of melt crystallization and also analyzed polymorph of two samples. For melt crystallization, we investigate the crystal layer growth versus time curve of samples and compared with the theoretical calculation. We use low temperature differential scanning calorimetry (LT-DSC) to determine the melting point and the equilibrium state and combine with X-ray diffraction to characterize the polymorph of cocoa butter and chocolate. By using T-history method, thermal properties of cocoa butter are: melting point (Tm) = 287.3 ± 0.3 K, heat capacity of liquid state (Cpl) = 3.46 ± 0.34 kJ kg-1 K-1, heat capacity of solid state (Cps) = 7.35 ± 1.47 kJ kg-1 K-1, liquid-solid enthalpy change (ΔHls) = 30.1 ± 1.7 kJ kg-1 K-1, and thermal conductivity (ks) = 0.173 ± 0.07 W m-1 K-1 and the thermal properties of chocolate are: Tm = 290.9 ± 0.3 K, Cpl = 2.92 ± 0.94 kJ kg-1 K-1, Cps=6.39±0.52 kJ kg-1 K-1, ΔHls = 12.3 ± 2.6 kJ kg-1 K-1 and ks = 0.215 ± 0.006 W m-1 K-1.
The LT-DSC and X-ray diffraction showed that the cocoa butter and chocolate made by T-history are both form IV and form V, respectively. Melt crystallization showed the crystal layer of samples would increase as time went on. The layer thickness of cocoa butter from melt crystallization was between 0.05 cm and 0.13 cm, and would produce the Form V crystal, which was the most ideal form for chocolate manufacturing. The layer thickness of chocolate made by the same process was between 0.46 cm to 1.27 cm which was ten times larger than cocoa butter. However, it generated the Form II, Form III and Form V crystals. In this research, we investigated the possibility of the application of commercial manufacturing of chocolate without the annealing process.
關鍵字(中) ★ 溫度軌跡
★ 熔融結晶
★ 巧克力
★ 可可脂關鍵字(英) ★ T-history
★ Melt crystalllization
★ Chocolate
★ Cocoa butter論文目次 摘要 i
Abstract iii
Acknowledgement v
Table of Contents vii
List of Figures x
List of Tables xiii
Chapter 1 1
Background 1
1.1 Chocolate 1
1.2 Cocoa butter 2
1.3 Conceptual Framework 7
1.4 References 9
Chapter 2 11
Analytical Methods 11
2.1 Thermal Analysis Methods 11
2.1.1 Low Temperature Differential Scanning Calorimetry (LT-DSC)
11
2.1.2 Thermocouple 14
2.1.3 Temperature-history Method (T-history Method) 18
2.2 Crystallographic Analysis Methods 18
2.2.1 Powder X-ray Diffraction (PXRD) 18
2.3 References 22
Chapter 3 23
Materials and Experimental Procedure 23
3.1 Introduction 23
3.2 Materials 24
3.3 Analytical Instruments and Experimental Procedures 25
3.4 References 40
Chapter 4 42
Results and Discussion 42
4.1 Results of Experiment 42
4.1.1 The Results of DSC Scans and XRD Patterns of samples from T-history Method 42
4.1.2 Melt Crystallization 47
4.2 References 56
Chapter 5 57
Conclusion and Future works 57
5.1 Conclusions 57
5.2 Future works 59
5.3 References 60
List of Figures
Figure 1.1 Molecular structures of (a) POP, (b) POS, (c) SOS 3
Figure 1.2 Molecular structures of (a) palmitic acid, (b) oleic acid, (c) stearic acid 4
Figure 1.3 Molecular arrangement of (a) α-form (b) β’-form, (c) β-form 5
Figure 1.4 Possible transformations of cocoa butter 6
Figure 1.5 Tempering sequence during lipid crystallization in chocolates10 6
Figure 2.1 Schematic diagrams of (a) heat-flux DSC, and
(b) power-compensated DSC. 12
Figure 2.2 Low temperature differential scanning calorimetry.
(Perkin Elmer DSC 7, Norwalk, CT, U. S. A.) 13
Figure 2.3 Schematic diagrams of thermocouple basics. 15
Figure 2.4 The thermometer used is Lutron Electronic TM-947SD
(Taipei, Taiwan). 16
Figure 2.5 Diffraction of Bragg’s Law 19
Figure 2.6 Bruker Axs D8 Advance PXRD 21
Figure 3.1 Three identical heating-cooling cycles for sample analysis 25
Figure 3.2 Heating-cooling cycles for polymorph characterization 26
Figure 3.3 (a) A typical T-history curve for samples, and
(b) typical T-history curve for distilled water sample. 29
Figure 3.4 Experimental setups for temperature-history method.
(a) 4 channels thermometer, (b) water bath, (c) K-type thermocouple, and (d) samples in the test tube. 30
Figure 3.5 Experimental set up for melt crystallization: (a) cooling finger,
(b) crystallized cocoa butter layer, and (c) molten cocoa butter 31
Figures 3.6 (a) LT-DSC scan of cocoa butter, (b) T-history curve of cocoa butter,
(c) LT-DSC scan of chocolate, and (d) T-history curve of chocolate. 37
Figure 4.1 PXRD pattern of cocoa butter from T-history method 43
Figure 4.2 LT-DSC scan of cocoa butter made from T-history method 44
Figure 4.3 PXRD pattern of chocolate from T-history method 45
Figure 4.4 LT-DSC scan of chocolate from T-history method 46
Figure 4.5 Photo images of crystal layer thickness of cocoa butter at different time 48
Figure 4.6 Photo images of crystal layer thickness of chocolate at different time 48
Figure 4.7 (a) Solid layer growth of cocoa butter at T0=5oC Tb=50oC
-Theoretical value of solid layer growth
▓Experimental value of solid layer growth,
▓calculate value of convective heat-transfer coefficient,
(b) Solid layer growth of chocolate at T0=5oC Tb=50oC
-Theoretical value of solid layer growth
▓Experimental value of solid layer growth,
▓calculate value of convective heat-transfer coefficient, 50
Figure 4.8 PXRD pattern of cocoa butter from melt crystallization. 51
Figure 4.9 LT-DSC scan of the cocoa butter from melt crystallization 52
Figure 4.10 PXRD pattern of chocolate from melt crystallization 53
Figure 4.11 LT-DSC scan of chocolate from melt crystallization 54
Figure 5.1 LT-DSC scan of purchased chocolate 58
Figure 5.2 PXRD pattern of purchased chocolate 59
List of Tables
Table 1.1 Melting points of different polymorphs of cocoa butter7,8 5
Table 2.1 Seven kinds of thermocouples from TM-947SD operation manual. 15
Table 2.2 Descriptions of analytical instruments in this study. 21
Table 3.1 Thermal properties of cocoa butter and dark chocolate (literature value)- 35
Table 3.2 Nomenclatures of all symbols used for temperature-history method.6 38
Table 3.3 Nomenclatures of all symbols used for melt crystallization. 39
Table 4.1 Density of cocoa butter and chocolate 42
Table 4.2 Thermal properties of cocoa butter and chocolate 47
Table 4.3 Layer thickness versus time of cocoa butter and chocolate from
melt crystallization 49參考文獻 Latif, R. Chocolate/Cocoa butter and human health: a review. Neth. J. Med. 2013, 71(2), 63-68.
Ding, E. L.; Hutfless, S. M.; Ding, X.; Girotra. S. Chocolate and prevention of cardiovascular disease: a systematic review. Nutr. Metab. 2006, 3(2) 1-12.
Afoakwa, E. O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor formation and character in cocoa and chocolate: a critical review. Crit. Rev. Food. Sci. 2008, 48(9) 840-857.
林和生.巧克力評鑑 屏東可可飄香. https://www.chinatimes.com/newspapers/20171115000440-260102?chdtv (Nov 15, 2017).
Loisel, C.; Keller, G.; Lecq, G.; Bourgaux, C.; Ollivon, M. Phase Transitions and Polymorphism of cocoa butter. J. Am. Oil. Chem. Soc. 1998, 75(4) 425-439.
Sato, K.; Arishima, T.; Wang, Z. H.; Ojima, K.; Sagi, N.; Mori, H. Polymorphism of POP and SOS. I. Occurrence and polymorphic transformation. J. Am Oil. Chem. Soc. 1989, 66(5) 664-674.
Wille, R. L.; Lutton, E. S. Polymorphism of Cocoa butter, J. Am. Oil. Chem. Soc. 1966, 43(8) 491-496.
Marken, G. V.; Vaeck, S. V. Etude du polymorphisme du beurre de cacao par calorimétrie DSC. Lebensm. Wiss. Technol. 1980, 13(6) 314-317.
Chapman, G. M.; Akehurst, E. E.; Wright, W. B. Cocoa butter and confectionery fats. Studies using programmed temperature X-ray diffraction and differential scanning calorimetry. J. Am. Oil. Chem. Soc. 1971, 48(12) 824-830.
Afoakwa, E. O.; Paterson, A.; Fowler, M. Factors influencing rheological and textural qualities in chocolate – a review. Trends. Food. Sci. Tech. 2007, 18(6) 290-298.
Chianese, A.; Santilli, N. Modelling of the solid layer growth from melt crystallization – the integral formulation approach. Chem. Eng. Sci. 1998, 53(1) 107-111.
Ulrich, J.; Bierwirth, J.; Henning, S. Solid layer melt crystallization. Sep. Purif. Rev. 1996, 25(1), 1-45.
Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10(3), 201-205.
Clas, S. D.; Dalton, C. R.; Hancok, B. C. Differential scanning calorimetry: applications in drug development. PSTT 1999, 2(8), 311-320.
Lee, T.; Chiu Y. H.; Lee Y.; Lee, H. L. Thermal properties and structural characterization of new types of phased change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochim. Acta. 2014, 575, 81-89.
The Labfacility temperature handbook.
The operation manual of TM-947SD thermometer.
Hong, H.; Kim, S. K.; Kim, Y. S. Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int. J. Refrig. 2004, 27(4), 360-366.
Schenk, H.; Peschar, R. Understanding the structure of chocolate. Radia. Phys. Chem. 2004, 71(3-4) 829-835.
Spong, B. R.; Price, C. P.; Jaysasankar, A.; Matzger, A. J.; Hornedo, N. R. General principles of pharmaceutical solid polymorphism: a supramolecular perspective. Adv. Drug. Deliv. Rev. 2004, 56(3), 241-274.
Padden, B. E.; Zell, M. T.; Dong, Z.; Schroeder, S. A.; Grant, D. J. W.; Munson, E. J. Comparison of solid-state C-13 NMR spectroscopy and powder X-ray diffraction for analyzing mixtures of polymorphs of neotame. Anal. Chem. 1999, 71(16), 3325-3331.
Murthy, N. S.; Reidinger, F. X-ray Analysis. In Materials Characterization and Chemical Analysis, 2nd Ed.; Sibilia, J. P. Eds.; Wiley-VCH, New York, NY, 1996; Chapter 6, pp 143-149.
Wille, R. L.; Lutton, E. S. Polymorphism of Cocoa butter, J. Am. Oil. Chem. Soc. 1966, 43(8) 491-496.
Marken, G. V.; Vaeck, S. V. Etude du polymorphisme du beurre de cacao par calorimétrie DSC. Lebensm. Wiss. Technol. 1980, 13(6) 314-317.
Schenk, H.; Peschar, R. Understanding the structure of chocolate. Radia. Phys. Chem. 2004, 71(3-4) 829-835.
Yanping, Y.; Wenquan, T.; Xiaoling, C.; Li, B. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture. J. Chem. Eng. Data 2011, 56 (6), 2889-2891.
Hong, H.; Kim, S. K.; Kim, Y. S. Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int. J. Refrig. 2004, 27(4), 360-366.
Lee, T.; Chiu Y. H.; Lee Y.; Lee, H. L. Thermal properties and structural characterization of new types of phased change material: Anhydrous and hydrated palmitic acid/camphene solid dispersions. Thermochim. Acta. 2014, 575, 81-89.
Zhang, Y.; Jiang, Y.; Jiang, Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10(3), 201-205.
Parisi, M.; Chianese, A. The crystal layer growth from a well-mixed melt. Chem. Eng. Sci. 2001, 56(14), 4245-4256.
Chianese, A.; Santilli, N. Modelling of the solid layer growth from melt crystallization – the integral formulation approach. Chem. Eng. Sci. 1998, 53(1), 107-111.
Beierling, T.; Ruether, F. Separation of the isomeric long-chain aldehydes dodecanal / 2-methylundecanal via layer melt crystallization. Chem. Eng. Sci. 2012, 77, 71-77.
Sasaki, M.; Ueno, S.; Sato, K. Polymorphism and mixing phase behavior of major triacylglycerols of cocoa butter. In Cocoa butter and related compounds, 1st Ed.; AOCS press. 2012; Chapter 6, pp 151-172.
Chevalley, J.; Rostagno, W.; Egli, R. H. A study of the physical properties of chocolate. Rev. Int. Choc. 1970, 25, 3-6.
Debaste, F.; Kegelaers, Y.; Hamor, H. B.; Halloin, V. Contribution to the modelling of chocolate tempering process. J. Food. Eng. 2008, 88(4), 568-575
Engmann, J.; Mackley, M. R. Semi-solid processing of chocolate and cocoa butter modelling rheology and microstructure changes during extrusion. Food. Bioprod. Process. 2006, 84(2), 102-108.
Malssen, K. V.; Langevelde, A. V.; Peschar, R.; Schenk, H. Phase behavior and extended phase scheme of static cocoa butter investigated with real-time X-ray powder diffraction. J. Am. Oil. Chem. Soc. 1999, 76(6), 669-676.
Ghazani, S. M.; Marangoni, A. G. The stability and nature of the form IV polymorph of cocoa butter is dictated by 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol. Cryst. Growth. Des. 2019, 19(3), 1488-1493.
Wille, R. L.; Lutton, E. S. Polymorphism of Cocoa butter, J. Am. Oil. Chem. Soc. 1966, 43(8) 491-496.
Schenk, H.; Peschar, R. Understanding the structure of chocolate. Radia. Phys. Chem. 2004, 71(3-4) 829-835.
Wille, R. L.; Lutton, E. S. Polymorphism of Cocoa butter, J. Am. Oil. Chem. Soc. 1966, 43(8) 491-496.
Schenk, H.; Peschar, R. Understanding the structure of chocolate. Radia. Phys. Chem. 2004, 71(3-4) 829-835.
指導教授 李度(Tu Lee) 審核日期 2019-7-25 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare