博碩士論文 102284002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.118.14.81
姓名 李宜學(Yi-Hsueh Lee)  查詢紙本館藏   畢業系所 生命科學系
論文名稱
(Recognition and modification of tRNAHis in higher eukaryotes)
相關論文
★ Kineosphaera limosa 菌株中 phaC 基因之序列分析★ 剪力和組織蛋白去乙醯酶在動靜脈廔管失效扮演的角色
★ Classification of powdery mildews on ornamental plants in northern Taiwan★ 秀麗隱桿線蟲線粒體AlaRS通過非傳統模式識別T型無臂tRNAAla
★ Bacillus thuringiensis contains two prolyl-tRNA synthetases of different origins★ Recognition of tRNA His isoacceptors by human HisRS isoforms
★ Functional replacement of yeast nuclear and mitochondrial RNase P by a protein-only RNase P★ Functional characterization of a noncanonical ProRS in Toxoplasma gondii
★ tRNA aminoacylation by a naturally occurring mini-AlaRS★ Functional Repurposing of C-Ala Domains
★ Recognition of a non-canonical tRNAAla by a non-canonical alanyl-tRNA synthetase★ 探討Alanyl-tRNA synthetase的演化及專一性
★ 酵母菌valyl-tRNA synthetase附加區段的 生物功能之探討★ 探討酵母菌glycyl-tRNA合成酵素的非傳統生物功能
★ 探討酵母菌Valyl-tRNA synthetase的生化活性★ 酵母菌轉譯起始機制的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) tRNAHis上額外的5′鳥嘌呤核苷酸(G-1)是這種tRNA在大多數生物中普遍的特徵,同時也是tRNAHis上的主要辨識元素(Identity element)。G-1來自於基因編碼或通過tRNAHis鳥苷酸轉移酶(tRNAHis guanylyltransferase,簡稱Thg1)轉錄後修飾添加。儘管秀麗隱桿線蟲(Caenorhabditis elegans)是一種不具有Thg1的生物,但它的細胞質tRNAHis基因保留了G-1的編碼。我們的研究表明,其線粒體tRNAHis缺乏G-1。這種tRNA雖然缺乏典型的辨識元素G-1,但仍可在體內有效地被氨酰基化。點突變實驗結果顯示,反密碼子對線蟲tRNAHis的識別效率影響很大,幾乎與典型的辨識元素G-1相當。另一方面,N73的鹼基也是tRNAHis的關鍵辨識元素。人類基因體中擁有兩種截然不同的組氨酰-tRNA合成酶(histidyl-tRNA synthetase,簡稱HisRS)同源基因,儘管這兩種酵素具有高度序列相似性(81%相似性),但它們強烈偏好不同的辨識元素(A73或C73)。最有趣的是,在細胞質和線粒體tRNAHis之間交換辨識元素(A73和C73)可以改變人類HisRS對這兩種tRNA的專一性。此外,人類只擁有單個Thg1基因,但同時負責修飾細胞質(含A73)和線粒體(含C73)tRNAHis。我們實驗結果顯示人類細胞質tRNAHis是通過ATP依賴機制被修飾,而其線粒體tRNAHis通過GTP依賴機制被修飾。這兩種機制都僅將一個G殘基加在tRNAsHis上。雖然N73影響Thg1添加G-1的效率,但N73的突變(A73至C或C73至A)並不改變修飾機制的種類。最有趣的是,GTP依賴機制會被ATP抑制。這篇論文中我們不僅發現了線蟲獨特的tRNAHis辨識機制,還分析了人類兩個同源HisRS酵素專一性的分化以及兩種獨特地tRNAHis的轉錄後修飾的機制。
摘要(英) The extra 5’ guanine nucleotide (G-1) on tRNAHis is a nearly universal feature that specifies tRNAHis identity. The G-1 residue is either genome encoded or post-transcriptionally added by tRNAHis guanylyltransferase (Thg1). Despite Caenorhabditis elegans being a Thg1-independent organism, its cytoplasmic tRNAHis retains a genome-encoded G-1. Our study showed that its mitochondrial tRNAHis lacks G-1. This tRNA, while lacking the canonical identity element, can still be efficiently aminoacylated in vivo. Mutagenesis assays showed that the anticodon takes a primary role in C. elegans tRNAHis identity recognition, being comparable to the universal identity element. On the other hand, the discriminator base N73 is a key identity element of tRNAHis. Humans possess two distinct yet closely related histidyl-tRNA synthetase (HisRS) homologues, despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Moreover, humans possess a single Thg1 gene is responsible for modification of both the cytoplasmic (with A73) and mitochondrial (with C73) tRNAHis isoacceptors. We reported herein that human cytoplasmic tRNAHis was modified via an ATP-dependent mechanism, while its mitochondrial tRNA isoacceptor was modified via a GTP-dependent mechanism. While N73 affected the efficiency of G-1 addition by Thg1, mutation of N73 (A73 to C or C73 to A) did not switch the mechanisms used for modification. Most intriguingly, the GTP-dependent mechanism was inhibited by ATP. Our study reveals novel scenarios of recognition and modification of tRNAHis in higher eukaryotes. 
關鍵字(中) ★ 轉錄後修飾
★ 核醣核酸
關鍵字(英) ★ tRNAHis
★ histidyl-tRNA synthetase
★ tRNAHis guanylyltransferase
論文目次 中文摘要 i
Abstract ii
誌謝 iii
List of Figures v
List of Tables vi
Overall introduction 1
Chapter I - Naturally occurring dual recognition of tRNAHis substrates with and without a universal identity element 5
Abstract 6
Materials and Methods 7
Results 12
Discussion 21
Chapter II - Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase 24
Abstract 25
Materials and Methods 26
Results 28
Discussion 37
Chapter III - Human Thg1 adds G-1 to tRNAsHis through two alternative mechanisms 40
Abstract 41
Materials and Methods 42
Results 44
Summary 50
References 51
Figures and Tables 56
Appendix 78
參考文獻 1. Carter, C.W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem, 62, 715-748.
2. McClain, W.H. (1993) Transfer RNA identity. FASEB J, 7, 72-78.
3. Giege, R., Sissler, M. and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res, 26, 5017-5035.
4. Ardell, D.H. (2010) Computational analysis of tRNA identity. FEBS Lett, 584, 325-333.
5. Burbaum, J.J. and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem, 266, 16965-16968.
6. Giege, R. (2006) The early history of tRNA recognition by aminoacyl-tRNA synthetases. J Biosci, 31, 477-488.
7. Lee, Y.H., Chang, C.P., Cheng, Y.J., Kuo, Y.Y., Lin, Y.S. and Wang, C.C. (2017) Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell Mol Life Sci, 74, 2663-2677.
8. Natsoulis, G., Hilger, F. and Fink, G.R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell, 46, 235-243.
9. Chatton, B., Walter, P., Ebel, J.P., Lacroute, F. and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The Journal of biological chemistry, 263, 52-57.
10. Chang, K.J. and Wang, C.C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. The Journal of biological chemistry, 279, 13778-13785.
11. Tang, H.L., Yeh, L.S., Chen, N.K., Ripmaster, T., Schimmel, P. and Wang, C.C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. The Journal of biological chemistry, 279, 49656-49663.
12. Juhling, F., Morl, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F. and Putz, J. (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic acids research, 37, D159-162.
13. Orellana, O., Cooley, L. and Soll, D. (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol Cell Biol, 6, 525-529.
14. Cooley, L., Appel, B. and Soll, D. (1982) Post-transcriptional nucleotide addition is responsible for the formation of the 5′ terminus of histidine tRNA. Proc Natl Acad Sci U S A, 79, 6475-6479.
15. Gu, W., Jackman, J.E., Lohan, A.J., Gray, M.W. and Phizicky, E.M. (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev, 17, 2889-2901.
16. Abad, M.G., Rao, B.S. and Jackman, J.E. (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci U S A, 107, 674-679.
17. Rao, B.S., Mohammad, F., Gray, M.W. and Jackman, J.E. (2013) Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res, 41, 1885-1894.
18. Rao, B.S. and Jackman, J.E. (2015) Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA, 21, 243-253.
19. Wang, C., Sobral, B.W. and Williams, K.P. (2007) Loss of a universal tRNA feature. Journal of bacteriology, 189, 1954-1962.
20. Nameki, N., Asahara, H., Shimizu, M., Okada, N. and Himeno, H. (1995) Identity elements of Saccharomyces cerevisiae tRNA(His). Nucleic Acids Res, 23, 389-394.
21. O′Hanlon, T.P. and Miller, F.W. (2002) Genomic organization, transcriptional mapping, and evolutionary implications of the human bi-directional histidyl-tRNA synthetase locus (HARS/HARSL). Biochemical and biophysical research communications, 294, 609-614.
22. Jackman, J.E. and Phizicky, E.M. (2006) tRNAHis guanylyltransferase adds G-1 to the 5′ end of tRNAHis by recognition of the anticodon, one of several features unexpectedly shared with tRNA synthetases. RNA, 12, 1007-1014.
23. Smith, B.A. and Jackman, J.E. (2012) Kinetic analysis of 3′-5′ nucleotide addition catalyzed by eukaryotic tRNAHis guanylyltransferase. Biochemistry, 51, 453-465.
24. Heinemann, I.U., Randau, L., Tomko, R.J., Jr. and Soll, D. (2010) 3′-5′ tRNAHis guanylyltransferase in bacteria. FEBS Lett, 584, 3567-3572.
25. Jackman, J.E. and Phizicky, E.M. (2006) tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G-1 addition. Proc Natl Acad Sci U S A, 103, 8640-8645.
26. Smith, B.A. and Jackman, J.E. (2014) Saccharomyces cerevisiae Thg1 uses 5′-pyrophosphate removal to control addition of nucleotides to tRNAHis. Biochemistry, 53, 1380-1391.
27. Hickey, F.B., Corcoran, J.B., Griffin, B., Bhreathnach, U., Mortiboys, H., Reid, H.M., Andrews, D., Byrne, S., Furlong, F., Martin, F. et al. (2014) IHG-1 increases mitochondrial fusion and bioenergetic function. Diabetes, 63, 4314-4325.
28. Edvardson, S., Elbaz-Alon, Y., Jalas, C., Matlock, A., Patel, K., Labbe, K., Shaag, A., Jackman, J.E. and Elpeleg, O. (2016) A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Neurogenetics, 17, 219-225.
29. Nakamura, A., Wang, D. and Komatsu, Y. (2018) Biochemical analysis of human tRNAHis guanylyltransferase in mitochondrial tRNAHis maturation. Biochem Biophys Res Commun, 503, 2015-2021.
30. Chang, C.P., Lin, G., Chen, S.J., Chiu, W.C., Chen, W.H. and Wang, C.C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem, 283, 30699-30706.
31. Chang, K.J., Lin, G., Men, L.C. and Wang, C.C. (2006) Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. The Journal of biological chemistry, 281, 7775-7783.
32. Boeke, J.D., Trueheart, J., Natsoulis, G. and Fink, G.R. (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods in enzymology, 154, 164-175.
33. Himeno, H., Hasegawa, T., Ueda, T., Watanabe, K., Miura, K. and Shimizu, M. (1989) Role of the extra G-C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res, 17, 7855-7863.
34. King, M.P. and Attardi, G. (1993) Post-transcriptional regulation of the steady-state levels of mitochondrial tRNAs in HeLa cells. J Biol Chem, 268, 10228-10237.
35. Janssen, B.D., Diner, E.J. and Hayes, C.S. (2012) Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol Biol, 905, 291-309.
36. Francklyn, C. and Schimmel, P. (1990) Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proceedings of the National Academy of Sciences of the United States of America, 87, 8655-8659.
37. Fersht, A.R., Ashford, J.S., Bruton, C.J., Jakes, R., Koch, G.L. and Hartley, B.S. (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry, 14, 1-4.
38. Chang, C.Y., Chien, C.I., Chang, C.P., Lin, B.C. and Wang, C.C. (2016) A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase. J Biol Chem, 291, 16567-16575.
39. Ladror, U.S., Egan, D.A., Snyder, S.W., Capobianco, J.O., Goldman, R.C., Dorwin, S.A., Johnson, R.W., Edalji, R., Sarthy, A.V., McGonigal, T. et al. (1998) Domain structure analysis of elongation factor-3 from Saccharomyces cerevisiae by limited proteolysis and differential scanning calorimetry. Protein Sci, 7, 2595-2601.
40. Gu, W., Hurto, R.L., Hopper, A.K., Grayhack, E.J. and Phizicky, E.M. (2005) Depletion of Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m5C. Mol Cell Biol, 25, 8191-8201.
41. Chiu, W.C., Chang, C.P., Wen, W.L., Wang, S.W. and Wang, C.C. (2010) Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol, 27, 1415-1424.
42. Preston, M.A. and Phizicky, E.M. (2010) The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA, 16, 1068-1077.
43. Sakurai, M., Ohtsuki, T. and Watanabe, K. (2005) Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res, 33, 1653-1661.
44. Su, D., Lieberman, A., Lang, B.F., Simonovic, M., Soll, D. and Ling, J. (2011) An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Res, 39, 4866-4874.
45. Jackman, J.E., Gott, J.M. and Gray, M.W. (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA, 18, 886-899.
46. Choi, H., Gabriel, K., Schneider, J., Otten, S. and McClain, W.H. (2003) Recognition of acceptor-stem structure of tRNA(Asp) by Escherichia coli aspartyl-tRNA synthetase. RNA, 9, 386-393.
47. Brennan, T. and Sundaralingam, M. (1976) Structlre of transfer RNA molecules containing the long variable loop. Nucleic Acids Res, 3, 3235-3250.
48. Rudinger, J., Felden, B., Florentz, C. and Giege, R. (1997) Strategy for RNA recognition by yeast histidyl-tRNA synthetase. Bioorg Med Chem, 5, 1001-1009.
49. Heinemann, I.U., Nakamura, A., O′Donoghue, P., Eiler, D. and Soll, D. (2012) tRNAHis-guanylyltransferase establishes tRNAHis identity. Nucleic Acids Res, 40, 333-344.
50. Placido, A., Sieber, F., Gobert, A., Gallerani, R., Giege, P. and Marechal-Drouard, L. (2010) Plant mitochondria use two pathways for the biogenesis of tRNAHis. Nucleic Acids Res, 38, 7711-7717.
51. Long, Y., Abad, M.G., Olson, E.D., Carrillo, E.Y. and Jackman, J.E. (2016) Identification of distinct biological functions for four 3′-5′ RNA polymerases. Nucleic Acids Res, 44, 8395-8406.
52. Hawko, S.A. and Francklyn, C.S. (2001) Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element. Biochemistry, 40, 1930-1936.
53. Chiu, M.I., Mason, T.L. and Fink, G.R. (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics, 132, 987-1001.
54. Chang, C.P., Chang, C.Y., Lee, Y.H., Lin, Y.S. and Wang, C.C. (2015) Divergent Alanyl-tRNA Synthetase Genes of Vanderwaltozyma polyspora Descended from a Common Ancestor through Whole-Genome Duplication Followed by Asymmetric Evolution. Molecular and cellular biology, 35, 2242-2253.
55. Wolf, Y.I., Aravind, L., Grishin, N.V. and Koonin, E.V. (1999) Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome research, 9, 689-710.
56. Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of molecular biology, 302, 205-217.
57. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular biology and evolution, 30, 2725-2729.
58. Puffenberger, E.G., Jinks, R.N., Sougnez, C., Cibulskis, K., Willert, R.A., Achilly, N.P., Cassidy, R.P., Fiorentini, C.J., Heiken, K.F., Lawrence, J.J. et al. (2012) Genetic mapping and exome sequencing identify variants associated with five novel diseases. PloS one, 7, e28936.
59. Pierce, S.B., Chisholm, K.M., Lynch, E.D., Lee, M.K., Walsh, T., Opitz, J.M., Li, W., Klevit, R.E. and King, M.C. (2011) Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proceedings of the National Academy of Sciences of the United States of America, 108, 6543-6548.
60. Zhou, J.J., Wang, F., Xu, Z., Lo, W.S., Lau, C.F., Chiang, K.P., Nangle, L.A., Ashlock, M.A., Mendlein, J.D., Yang, X.L. et al. (2014) Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. The Journal of biological chemistry, 289, 19269-19275.
61. Mathews, M.B. and Bernstein, R.M. (1983) Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature, 304, 177-179.
62. Ghirardello, A., Bassi, N., Palma, L., Borella, E., Domeneghetti, M., Punzi, L. and Doria, A. (2013) Autoantibodies in polymyositis and dermatomyositis. Current rheumatology reports, 15, 335.
63. Ray, P.S., Sullivan, J.C., Jia, J., Francis, J., Finnerty, J.R. and Fox, P.L. (2011) Evolution of function of a fused metazoan tRNA synthetase. Molecular biology and evolution, 28, 437-447.
64. Ardell, D.H. and Andersson, S.G. (2006) TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic acids research, 34, 893-904.
65. Chang, C.P., Tseng, Y.K., Ko, C.Y. and Wang, C.C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic acids research, 40, 314-322.
指導教授 王健家(Chien-Chia Wang) 審核日期 2019-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明