參考文獻 |
1. Veli, S. and B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 2007. 149(1): p. 226-233.
2. Akar, S.T., et al., Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009. 97(1): p. 98-104.
3. Georgopoulos, P., et al., Environmental copper: Its dynamics and human exposure issues. Vol. 4. 2001. 341-94.
4. Gaggelli, E., et al., Copper Homeostasis and Neurodegenerative Disorders (Alzheimer′s, Prion, and Parkinson′s Diseases and Amyotrophic Lateral Sclerosis). Chemical Reviews, 2006. 106(6): p. 1995-2044.
5. Squitti, R. and R. Polimanti, Copper phenotype in Alzheimer′s disease: dissecting the pathway. American journal of neurodegenerative disease, 2013. 2(2): p. 46-56.
6. Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005. 26(4): p. 235-244.
7. Oon, S. , Yap, C. and Ihle, B. U. (2006), Acute copper toxicity following copper glycinate injection. Internal Medicine Journal, 36: 741-743.
8. Akar, S.T., et al., Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009. 97(1-2): p. 98-104.
9. Fairbanks, V.F., Copper Sulfate-Induced Hemolytic Anemia: Inhibition of Glucose-6-Phosphate Dehydrogenase and Other Possible Etiologic Mechanisms. JAMA Internal Medicine, 1967. 120(4): p. 428-432.
10. Qian, Y., et al., Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. Brain Res Mol Brain Res, 2005. 134(2): p. 323-32.
11. Nastoulis, E., et al., Greenish-blue gastric content: Literature review and case report on acute copper sulphate poisoning. Forensic Sci Rev, 2017. 29(1): p. 77-91.
12. Förstner, U., Wittmann, G. T. W., Metal Pollution in the Aquatic Environment. Springer Verlag, New York, 1981.
13. Georgopoulos, P.G., et al., Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev, 2001. 4(4): p. 341-94.
14. Gamakaranage, C.S., et al., Complications and management of acute copper sulphate poisoning; a case discussion. J Occup Med Toxicol, 2011. 6(1): p. 34.
15. Aggarwal, A. and M. Bhatt, Advances in Treatment of Wilson Disease. Tremor Other Hyperkinet Mov (N Y), 2018. 8: p. 525.
16. Brewer, G.J., Zinc acetate for the treatment of Wilson’s disease. Expert Opinion on Pharmacotherapy, 2001. 2(9): p. 1473-1477.
17. Roberts, E.A., M.L. Schilsky, and D. American Association for Study of Liver, Diagnosis and treatment of Wilson disease: an update. Hepatology, 2008. 47(6): p. 2089-111.
18. Peters, R.A., L.A. Stocken, and R.H.S. Thompson, British Anti-Lewisite (BAL). Nature, 1945. 156(3969): p. 616-619.
19. Vilensky, J.A. and K. Redman, British anti-Lewisite (dimercaprol): An amazing history. Annals of Emergency Medicine, 2003. 41(3): p. 378-383.
20. Denny-Brown, D. and H. Porter, The Effect of BAL (2,3-Dimercaptopropanol) on Hepatolenticular Degeneration (Wilson′s Disease). New England Journal of Medicine, 1951. 245(24): p. 917-925.
21. Walshe, J.M., The story of penicillamine: A difficult birth. Movement Disorders, 2003. 18(8): p. 853-859.
22. Walshe, J.M., Penicillamine, a new oral therapy for Wilson′s disease. The American Journal of Medicine, 1956. 21(4): p. 487-495.
23. Walshe, J.M., DISTURBANCES OF AMINOACID METABOLISM FOLLOWING LIVER INJURY1: A Study by means of Paper Chromatography. QJM: An International Journal of Medicine, 1953. 22(4): p. 483-506.
24. Flora, G., M. Mittal, and S.J.S. Flora, 26 - Medical Countermeasures—Chelation Therapy, in Handbook of Arsenic Toxicology, S.J.S. Flora, Editor. 2015, Academic Press: Oxford. p. 589-626.
25. Lowe, A.B. and C.L. McCormick, Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002. 102(11): p. 4177-4190.
26. Munk, P. Introduction to Macromolecular Science; Wiley Interscience: New York, 1989; p 59.
27. Salamone, J. C.; Rice, W. C. Encyclopedia of Polymer Science and Engineering, 2nd ed.; Wiley-Interscience: New York, 1988; Vol. 11, p 514.
28. Ascoli, F. and C. Botré, Amphoteric behavior of a copolymer: N,N-diethylallylamine–acrylic acid. Journal of Polymer Science, 1962. 62(174): p. S56-S59.
29. Salamone, J.C., et al., Aqueous solution properties of a poly(vinyl imidazolium sulphobetaine). Polymer, 1978. 19(10): p. 1157-1162.
30. Lowe, A.B. and C.L. McCormick, Stimuli Responsive Water-Soluble and Amphiphilic (Co)polymers, in Stimuli-Responsive Water Soluble and Amphiphilic Polymers. 2000, American Chemical Society. p. 1-13.
31. Ishihara, K. and K. Fukazawa, CHAPTER 5 2-Methacryloyloxyethyl Phosphorylcholine Polymers, in Phosphorus-Based Polymers: From Synthesis to Applications. 2014, The Royal Society of Chemistry. p. 68-96.
32. Ishihara, K., et al., The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials Science, Polymer Edition, 2017. 28(10-12): p. 884-899.
33. Banerjee, S., et al., Amino-Acid-Based Zwitterionic Polymer and Its Cu(II)-Induced Aggregation into Nanostructures: A Template for CuS and CuO Nanoparticles. Macromolecular Rapid Communications, 2013. 34(18): p. 1480-1486.
34. Ros, R., J. Muñoz-Bertomeu, and S. Krueger, Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 2014. 19(9): p. 564-569.
35. Kalhan, S.C. and R.W. Hanson, Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 2012. 287(24): p. 19786-19791.
36. Liu, Q., A. Singh, and L. Liu, Amino Acid-Based Zwitterionic Poly(serine methacrylate) as an Antifouling Material. Biomacromolecules, 2013. 14(1): p. 226-231.
37. Romanski, J., et al., Polymeric hydrogels modified with ornithine and lysine: Sorption and release of metal cations and amino acids. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(3): p. 542-550.
38. Calvo, A., et al., Mesoporous Films and Polymer Brushes Helping Each Other To Modulate Ionic Transport in Nanoconfined Environments. An Interesting Example of Synergism in Functional Hybrid Assemblies. Journal of the American Chemical Society, 2009. 131(31): p. 10866-10868.
39. Yameen, B., et al., Single Conical Nanopores Displaying pH-Tunable Rectifying Characteristics. Manipulating Ionic Transport With Zwitterionic Polymer Brushes. Journal of the American Chemical Society, 2009. 131(6): p. 2070-2071.
40. McCormick, D.B., H. Sigel, and L.D. Wright, Structure of Mn2+ and Cu2+ complexes with l-methionine, S-methyl-l-cysteine, l-threonine and l-serine. Biochimica et Biophysica Acta (BBA) - General Subjects, 1969. 184(2): p. 318-328.
41. Cölfen, H., Double‐Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Vol. 22. 2001. 219-252.
42. Kabanov, A.V. and V.A. Kabanov, Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. Advanced Drug Delivery Reviews, 1998. 30(1): p. 49-60.
43. Bütün, V., N.C. Billingham, and S.P. Armes, Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution. Journal of the American Chemical Society, 1998. 120(45): p. 11818-11819.
44. L. M. Bronstein, S. N. Sidorov, A. Y. Gourkova, P. M. Valetsky, J. Hartmann, M. Breulmann, H. Co¨lfen, M. Antonietti, Inorg. Chim. Acta 1998, 280, 348
45. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
46. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
47. K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45 (2012) 4015-4039.
48. N.V. Tsarevsky, K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials, Chem Rev, 107 (2007) 2270- 2299.
49. Wei, Q., 14 - Emerging approaches to the surface modification of textiles, in Surface Modification of Textiles, Q. Wei, Editor. 2009, Woodhead Publishing. p. 318-323.
50. A.B. Lowe, C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, 32 (2007) 283-351.
51. G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
52. G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis, Polymer, 49 (2008) 1079-1131.
53. Le, T. P.; Moad, G.; Rizzardo, E.; Thang, S. H. Polymerization with living characteristics. WO9801478, 1998 (Chem. Abstr. 1998, 128, 115390f).
54. R.T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps, Macromolecules, 33 (2000) 243-245.
55. G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process–a third update, Australian Journal of Chemistry, 65 (2012) 985- 1076
56. G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Accounts of chemical research, 41 (2008) 1133-1142.
57. G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
58. Keddie, D.J., et al., RAFT Agent Design and Synthesis. Macromolecules, 2012. 45(13): p. 5321-5342.
59. Lowe, A.B. and C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): p. 283-351.
60. Lewis, D., G. Moad, and E. Rizzardo, Living Radical Polymerization by the RAFT Process. Vol. 58. 2005.
61. A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS, Polymer Chemistry, 6 (2015) 5437-5450.
62. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
63. Bawa, R., et al., Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(2): p. 150-158.
64. Kreuter, J., Nanoparticles—a historical perspective. International Journal of Pharmaceutics, 2007. 331(1): p. 1-10.
65. Ramezanpour, M., et al., Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016. 1858(7, Part B): p. 1688-1709.
66. Petrushev, B., et al., Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy. International journal of nanomedicine, 2016. 11: p. 641-660.
67. Wang, M., et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(11): p. 2868-2873.
68. Inci, F., et al., Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano, 2013. 7(6): p. 4733-4745.
69. Seo, S.-H., et al., Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosensors and Bioelectronics, 2015. 64: p. 69-73.
70. Qi, P., et al., Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection. Talanta, 2016. 147: p. 142-146.
71. Moser, F., et al., Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophysical journal, 2016. 110(4): p. 947-953.
72. Hatzfeld, J., Fluctuations of diphenylamine-DNA in yeast. Journal of Cellular Physiology, 1974. 83(1): p. 159-161.
73. Choi, C.H.J., et al., Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(3): p. 1235-1240.
74. Wilczewska, A.Z., et al., Nanoparticles as drug delivery systems. Pharmacological Reports, 2012. 64(5): p. 1020-1037.
75. Bazak, R., et al., Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and clinical oncology, 2014. 2(6): p. 904-908.
76. Patel, A., K. Cholkar, and A.K. Mitra, Recent developments in protein and peptide parenteral delivery approaches. Therapeutic delivery, 2014. 5(3): p. 337-365.
77. Xu, W., P. Ling, and T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of drug delivery, 2013. 2013: p. 340315-340315.
78. Joseph, M., H.M. Trinh, and A.K. Mitra, Chapter 7 - Peptide and Protein-Based Therapeutic Agents∗, in Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, A.K. Mitra, K. Cholkar, and A. Mandal, Editors. 2017, Elsevier: Boston. p. 145-167.
79. Roucoux, A., J. Schulz, and H. Patin, Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts? Chemical Reviews, 2002. 102(10): p. 3757-3778.
80. Bronstein, L.M., et al., Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorganica Chimica Acta, 1998. 280(1): p. 348-354.
81. Maji, T., et al., Dual-Stimuli-Responsive l-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015. 48(14): p. 4957-4966.
82. Yusa, S.-i., et al., Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules, 2005. 6(2): p. 663-670.
83. Nehilla, B.J., et al., A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. Anal Chem, 2016. 88(21): p. 10404-10410.
84. Volkmann, L., et al., Poly(2-acrylamidoglycolic acid) (PAGA): Controlled Polymerization Using RAFT and Chelation of Metal Cations. Macromolecules, 2018. 51(18): p. 7284-7294.
85. Zhao, L., et al., In vitro characterization of pH-sensitive Bletilla Striata polysaccharide copolymer micelles and enhanced tumour suppression in vivo. J Pharm Pharmacol, 2018. 70(6): p. 797-807.
86. Jackson, C.L., et al., Visualization of Dendrimer Molecules by Transmission Electron Microscopy (TEM): Staining Methods and Cryo-TEM of Vitrified Solutions. Macromolecules, 1998. 31(18): p. 6259-6265.
87. Huang, C.J., et al., Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance. ACS Appl Mater Interfaces, 2015. 7(42): p. 23776-86.
88. Xiong, D., et al., Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE. Applied Surface Science, 2014. 298: p. 56-61.
89. Henchoz, Y., Schappler, J., Geiser, L. et al. Anal Bioanal Chem (2007) 389: 1869. https://doi.org/10.1007/s00216-007-1568-5
90. S.H Chen; T.-L. Lin, Methods of Experimental Physics - Neutron Scattering in Condensed Matter Research; Eds. Skod, K.; Price, D.L. Academic Press: New York, 1987; Vol. 23B, Chapter 16.
91. Sinkó, K., V. Torma, and A. Kovács, SAXS investigation of porous nanostructures. Journal of Non-Crystalline Solids, 2008. 354(52): p. 5466-5474.
92. Jensen, H., et al., Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. Journal of Experimental Nanoscience, 2006. 1(3): p. 355-373.
93. Leite, F.L., et al., Nanoscale conformational ordering in polyanilines investigated by SAXS and AFM. Journal of Colloid and Interface Science, 2007. 316(2): p. 376-387.
94. Daniel, K.G., et al., Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochemical Pharmacology, 2004. 67(6): p. 1139-1151.
95. Srinivas, G., D.E. Discher, and M.L. Klein, Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 2004. 3(9): p. 638-644.
96. Beckmann, L.S. and B.N. Day, Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium. Theriogenology, 1993. 39(3): p. 611-622.
97. Watson, P.F. and A.E. Duncan, Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa. Cryobiology, 1988. 25(2): p. 131-142. |