博碩士論文 106827017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:918 、訪客IP:3.145.106.222
姓名 郭星昱(Shing-Yu Kuo)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 雙親水端共聚物應用於治療銅中毒疾病
(Poly(2-methacryloyloxyethyl phosphorylcholine-b-serinyl acrylate) Block Copolymer for the Treatment of Copper Poison)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 重金屬汙染已經對人類的健康產生嚴重的威脅。銅是人體必需的金屬元素之一,然而過量地攝取銅離子會引發嚴重的副作用。胺基酸已經被應用於人體內的銅離子移除治療,此外聚丙烯醯氧絲胺酸酯(Poly(serine acrylate, PserA))已被報導可作為螯合劑與銅離子螯合,然而PserA與銅離子螯合後會形成沉澱並且提升生物毒性。
本研究利用可逆加成斷裂鏈轉移聚合法(Reversible Addition-Fragmentation chain Transfer polymerization, RAFT),將PserA與聚2-甲基丙烯醯氧乙基磷酸膽鹼(Poly(2-methacryloyloxyethyl phosphorylcholine), PMPC)組成線性共聚物(PMPC-b-PserA),PMPC可有效增加PMPC-b-PserA與銅離子螯合後的溶解度,同時降低生物毒性。我們使用核磁共振光譜來檢測共聚物上的氫原子與碳原子,利用傅立葉轉換紅外光譜鑑定磷酸基、胺基與羧酸基的訊號,使用質譜法檢測丙烯醯氧絲胺酸酯的分子量以及膠體滲透層析儀量測共聚物的分子量。經由紫外光-可見光譜儀證實在pH值為7的條件下,聚丙烯醯氧絲胺酸酯與銅離子形成金屬膠體,此外我們以動態光散射儀量測不同聚合度的PMPC-b-PserA、環境pH值、離子強度與血清對於金屬膠體粒徑的影響。並且運用穿透式電子顯微鏡拍攝金屬膠體的形狀。最後藉由老鼠纖維母細胞(NIH/3T3)測試PMPC-b-PserA的細胞毒性與解毒效果。結果顯示PMPC-b-PserA具有可忽略的細胞毒性且有效的提升細胞的存活率於含有銅離子的環境,溶血實驗中也顯示了PMPC-b-PserA能夠有效降低銅離子引發的溶血現象。本研究提出了一種全新移除重金屬離子的方式,對於治療重金屬中毒做出了貢獻。
摘要(英) The issue of heavy metal poisoning is very much concerned as it cause major risks for human health. Although copper (Cu) an essential element in the human body, excessive intake can have adverse effects on the systems in the human body. Poly amino acid was evaluated for possible use as an chelating agent in the treatment of metal intoxication in human body. Poly(serinyl acrylate) (PserA) were developed for its chelation with copper(II) ions. However, the precipitation formed will increase the toxicity level. Herein, we employ 2-methacryloyloxyethyl phosphorylcholine (MPC) to avoid precipitation and form metal colloids to decrease toxicity. We report a robust apporach to synthesize the double hydrophilic block copolymers(DHBCs) of PserA and PMPC via reversible addition-fragmentation chain transfer polymerization (RAFT). A variety of techniques were applied to confirm the synthesis and structure of this copolymer including 1H nuclear magnetic resonance (NMR), 13C NMR, fourier-transform infrared spectroscopy (FTIR), mass spectra (MS) and gel permeation chromatography (GPC). In addition, the chelating PMPC-b-PserA loaded to copper ions at pH = 7.2 were indicated by ultraviolet–visible spectroscopy(UV-vis). Dynamic light scattering (DLS) was applied to correlate between the Cu2+/serA ratio and the size of metal colloids at pH=7.2. We also studied influence of degree of polymerization(DP), pH effect, ionic strength and serum. Transmission electron microscopy (TEM) was also operated to take metal colloid′s image. Finally, the double hydrophilic block copolymers(DHBCs) was tested on NIH-3T3 fibroblasts normal cells to study the detoxification effect. The double hydrophilic block copolymers possesses good biocompatibility to remove excess copper(II) ions and increase the cell viability in vitro. Hemolysis assay demonstrates that copolymer drastically decreases red blood cell(RBC) hemolysis from copper(II) in vitro. This strategy provides another treatment approach for heavy metal poisoning.
關鍵字(中) ★ 重金屬中毒
★ 螯合
★ 金屬膠體
★ 高分子膠體
★ 高分子
★ 微胞
關鍵字(英) ★ heavy metal poisoning
★  poly(2-methacryloyloxyethyl phosphorylcholine)
★ poly(L-serinyl acrylate)
★ chelation
★ polymeric metal colloids
論文目次 中文摘要 i
Abstractiii
致謝 v
目錄 viii
圖目錄 xv
表目錄 xx
第一章: 文獻回顧 1
1.1 重金屬汙染 1
1.2 金屬銅 1
1.3 銅在人體中扮演的角色 2
1.4 銅中毒疾病的介紹 2
1.4.1 急性銅中毒 3
1.4.2 慢性銅中毒 3
1.5 當前重金屬中毒的治療方法 4
1.5.1抑制銅的吸收 4
1.5.2移除體內過量的銅 4
第二章 : 介紹 6
2.1 高分子 6
2.1.1單離子高分子 6
2.1.2雙離子高分子 7
2.1.2.1 polyampholytes 8
2.1.2.2 polybetaines 9
2.1.2.2.1 Phosphobetaine 10
2.1.2.2.2 胺基酸 12
2.2雙親水端嵌段共聚物 14
2.3 自由基反應 15
2.3.1 可逆加成-斷裂鏈轉移聚合 17
2.3.2 可逆加成-斷裂鏈轉移聚合的反應機制 19
2.3.3 可逆加成-斷裂鏈轉移試劑 20
2.3.4 可逆加成-斷裂鏈轉移試劑的選擇 22
2.4奈米科技應用於生物體的螯合劑輸送 23
2.4.1 奈米粒子 23
2.4.2微胞 25
第三章 : 研究目的 27
第四章 : 材料與方法 28
4.1. 材料 28
4.2. 方法 30
實驗架構與流程 30
4.2.2 合成Poly(2-methacryloyloxyethyl phosphorylcholine) 33
4.2.3 合成Poly(Serinyl acrylate) 34
4.2.4 合成Poly(2-methacryloyloxyethyl phosphorylcholine-b-Pserinyl acrylate) 35
4.2.5 PMPCm-b-PserAn滴定曲線 36
4.2.6 PMPC55-b-PserA50螯合銅測試 36
4.2.7改變銅的濃度對於金屬膠束大小的影響 36
4.2.8改變PMPC55-b-PserA50的濃度對於金屬膠束大小的影響 36
4.2.9改變PMPCm聚合度對於金屬膠束大小的影響 37
4.2.10改變PserAn聚合度對於金屬膠體大小的影響 37
4.2.11錯合物濃度對於金屬膠束大小的影響 38
4.2.12離子強度對於金屬膠束大小的影響 38
4.2.13pH值對於金屬膠體大小的影響 38
4.2.14金屬膠體在DMEM+10% FBS中的穩定度 39
4.2.15穿透式電子顯微鏡下的金屬膠體 39
4.2.16NIH/3T3細胞培養 40
4.2.16.1 PMPC55-b-PserA50生物相容性測試 42
4.2.16.2相同莫爾濃度下聚合度對於生物相容性的影響 43
4.2.16.3相同莫爾濃度下高分子解毒效果測試 43
4.2.16.4相同重量下聚合度對於生物相容性的影響 43
4.2.16.5相同重量下高分子解毒效果測試 43
4.2.17高分子的溶血測試 44
4.2.18高分子抑制溶血的測試 44
第五章 : 結果與討論 45
5.1 serA單體鑑定 45
5.1.1 serA的核磁共振氫譜. 45
5.1.2 serA的核磁共振碳譜. 46
5.1.3 serA的傅里葉轉換紅外光譜 47
5.1.4 serA的質譜圖 48
5.2高分子合成鑑定 49
5.2.1核磁共振氫譜分析高分子 49
5.2.2核磁共振碳譜分析高分子 52
5.2.3 凝膠滲透層析儀分析高分子 55
5.2.4傅里葉轉換紅外光譜儀分析高分子 59
5.2.5高分子的轉化率、聚合度與產率 60
5.3 PMPCm-b-PserAn的酸鹼滴定 61
5.3.1修飾前後對於L-絲胺酸等電點的影響 61
5.4 PMPC55-b-PserA50螯合銅測試 64
5.4.1PMPC與銅之間的交互作用 65
5.4.2PMPC55-b-PserA50與銅之間的交互作用 66
5.5濃度對於粒徑的影響 67
5.5.1改變銅的濃度對於金屬膠體大小的影響 67
5.4.2 PMPC55-b-PserA50的濃度對於金屬膠體大小的影響 68
5.4.3改變PMPCm聚合度對於金屬膠體大小的影響 69
5.4.4改變PserAn聚合度對於金屬膠體大小的影響 70
5.4.5錯合物濃度對於金屬膠體大小的影響 71
5.5環境對於金屬膠體大小的影響 72
5.5.1離子強度對於金屬膠體大小的影響 73
5.5.2 pH值對於金屬膠體大小的影響 74
5.5.3金屬膠體在DMEM中的穩定度 76
5.6穿透式電子顯微鏡下的金屬膠體 77
5.7 小角度X光散射 (SAXS)判斷金屬膠體的形狀與尺寸 80
5.7.1 小角度X光散射 (SAXS)判斷金屬膠體的形狀 80
5.7.2 小角度X光散射 (SAXS)判斷金屬膠體的尺寸 82
5.8 生物相容性與解毒效果測試 83
5.8.1 硫酸銅對於生物毒性 83
5.8.2 PMPC55-b-PserA50對於細胞存活率的影響 84
5.8.2 PMPC55-b-PserA50的最佳治療濃度 85
5.8.3相同莫爾濃度下高分子的生物相容性與解毒效果 86
5.8.3.1改變PMPC聚合度對於細胞存活率的影響與解毒效果 87
5.8.3.2改變PserA聚合度對於細胞存活率的影響與解毒效果 90
5.8.4相同重量濃度下高分子的細胞存活率 92
5.8.4.1改變PMPC聚合度對於細胞存活率的影響與解毒效果 92
5.8.4.2改變PserA聚合度對於細胞存活率的影響與解毒效果 94
5.9溶血實驗 96
5.9.1高分子的溶血實驗 96
5.9.2高分子抑制溶血的測試 97
第六章:結論 98
參考文獻 99
參考文獻 1. Veli, S. and B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 2007. 149(1): p. 226-233.
2. Akar, S.T., et al., Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009. 97(1): p. 98-104.
3. Georgopoulos, P., et al., Environmental copper: Its dynamics and human exposure issues. Vol. 4. 2001. 341-94.
4. Gaggelli, E., et al., Copper Homeostasis and Neurodegenerative Disorders (Alzheimer′s, Prion, and Parkinson′s Diseases and Amyotrophic Lateral Sclerosis). Chemical Reviews, 2006. 106(6): p. 1995-2044.
5. Squitti, R. and R. Polimanti, Copper phenotype in Alzheimer′s disease: dissecting the pathway. American journal of neurodegenerative disease, 2013. 2(2): p. 46-56.
6. Fraga, C.G., Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005. 26(4): p. 235-244.
7. Oon, S. , Yap, C. and Ihle, B. U. (2006), Acute copper toxicity following copper glycinate injection. Internal Medicine Journal, 36: 741-743.
8. Akar, S.T., et al., Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy, 2009. 97(1-2): p. 98-104.
9. Fairbanks, V.F., Copper Sulfate-Induced Hemolytic Anemia: Inhibition of Glucose-6-Phosphate Dehydrogenase and Other Possible Etiologic Mechanisms. JAMA Internal Medicine, 1967. 120(4): p. 428-432.
10. Qian, Y., et al., Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells. Brain Res Mol Brain Res, 2005. 134(2): p. 323-32.
11. Nastoulis, E., et al., Greenish-blue gastric content: Literature review and case report on acute copper sulphate poisoning. Forensic Sci Rev, 2017. 29(1): p. 77-91.
12. Förstner, U., Wittmann, G. T. W., Metal Pollution in the Aquatic Environment. Springer Verlag, New York, 1981.
13. Georgopoulos, P.G., et al., Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev, 2001. 4(4): p. 341-94.
14. Gamakaranage, C.S., et al., Complications and management of acute copper sulphate poisoning; a case discussion. J Occup Med Toxicol, 2011. 6(1): p. 34.
15. Aggarwal, A. and M. Bhatt, Advances in Treatment of Wilson Disease. Tremor Other Hyperkinet Mov (N Y), 2018. 8: p. 525.
16. Brewer, G.J., Zinc acetate for the treatment of Wilson’s disease. Expert Opinion on Pharmacotherapy, 2001. 2(9): p. 1473-1477.
17. Roberts, E.A., M.L. Schilsky, and D. American Association for Study of Liver, Diagnosis and treatment of Wilson disease: an update. Hepatology, 2008. 47(6): p. 2089-111.
18. Peters, R.A., L.A. Stocken, and R.H.S. Thompson, British Anti-Lewisite (BAL). Nature, 1945. 156(3969): p. 616-619.
19. Vilensky, J.A. and K. Redman, British anti-Lewisite (dimercaprol): An amazing history. Annals of Emergency Medicine, 2003. 41(3): p. 378-383.
20. Denny-Brown, D. and H. Porter, The Effect of BAL (2,3-Dimercaptopropanol) on Hepatolenticular Degeneration (Wilson′s Disease). New England Journal of Medicine, 1951. 245(24): p. 917-925.
21. Walshe, J.M., The story of penicillamine: A difficult birth. Movement Disorders, 2003. 18(8): p. 853-859.
22. Walshe, J.M., Penicillamine, a new oral therapy for Wilson′s disease. The American Journal of Medicine, 1956. 21(4): p. 487-495.
23. Walshe, J.M., DISTURBANCES OF AMINOACID METABOLISM FOLLOWING LIVER INJURY1: A Study by means of Paper Chromatography. QJM: An International Journal of Medicine, 1953. 22(4): p. 483-506.
24. Flora, G., M. Mittal, and S.J.S. Flora, 26 - Medical Countermeasures—Chelation Therapy, in Handbook of Arsenic Toxicology, S.J.S. Flora, Editor. 2015, Academic Press: Oxford. p. 589-626.
25. Lowe, A.B. and C.L. McCormick, Synthesis and Solution Properties of Zwitterionic Polymers. Chemical Reviews, 2002. 102(11): p. 4177-4190.
26. Munk, P. Introduction to Macromolecular Science; Wiley Interscience: New York, 1989; p 59.
27. Salamone, J. C.; Rice, W. C. Encyclopedia of Polymer Science and Engineering, 2nd ed.; Wiley-Interscience: New York, 1988; Vol. 11, p 514.
28. Ascoli, F. and C. Botré, Amphoteric behavior of a copolymer: N,N-diethylallylamine–acrylic acid. Journal of Polymer Science, 1962. 62(174): p. S56-S59.
29. Salamone, J.C., et al., Aqueous solution properties of a poly(vinyl imidazolium sulphobetaine). Polymer, 1978. 19(10): p. 1157-1162.
30. Lowe, A.B. and C.L. McCormick, Stimuli Responsive Water-Soluble and Amphiphilic (Co)polymers, in Stimuli-Responsive Water Soluble and Amphiphilic Polymers. 2000, American Chemical Society. p. 1-13.
31. Ishihara, K. and K. Fukazawa, CHAPTER 5 2-Methacryloyloxyethyl Phosphorylcholine Polymers, in Phosphorus-Based Polymers: From Synthesis to Applications. 2014, The Royal Society of Chemistry. p. 68-96.
32. Ishihara, K., et al., The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials Science, Polymer Edition, 2017. 28(10-12): p. 884-899.
33. Banerjee, S., et al., Amino-Acid-Based Zwitterionic Polymer and Its Cu(II)-Induced Aggregation into Nanostructures: A Template for CuS and CuO Nanoparticles. Macromolecular Rapid Communications, 2013. 34(18): p. 1480-1486.
34. Ros, R., J. Muñoz-Bertomeu, and S. Krueger, Serine in plants: biosynthesis, metabolism, and functions. Trends in Plant Science, 2014. 19(9): p. 564-569.
35. Kalhan, S.C. and R.W. Hanson, Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. Journal of Biological Chemistry, 2012. 287(24): p. 19786-19791.
36. Liu, Q., A. Singh, and L. Liu, Amino Acid-Based Zwitterionic Poly(serine methacrylate) as an Antifouling Material. Biomacromolecules, 2013. 14(1): p. 226-231.
37. Romanski, J., et al., Polymeric hydrogels modified with ornithine and lysine: Sorption and release of metal cations and amino acids. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(3): p. 542-550.
38. Calvo, A., et al., Mesoporous Films and Polymer Brushes Helping Each Other To Modulate Ionic Transport in Nanoconfined Environments. An Interesting Example of Synergism in Functional Hybrid Assemblies. Journal of the American Chemical Society, 2009. 131(31): p. 10866-10868.
39. Yameen, B., et al., Single Conical Nanopores Displaying pH-Tunable Rectifying Characteristics. Manipulating Ionic Transport With Zwitterionic Polymer Brushes. Journal of the American Chemical Society, 2009. 131(6): p. 2070-2071.
40. McCormick, D.B., H. Sigel, and L.D. Wright, Structure of Mn2+ and Cu2+ complexes with l-methionine, S-methyl-l-cysteine, l-threonine and l-serine. Biochimica et Biophysica Acta (BBA) - General Subjects, 1969. 184(2): p. 318-328.
41. Cölfen, H., Double‐Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Vol. 22. 2001. 219-252.
42. Kabanov, A.V. and V.A. Kabanov, Interpolyelectrolyte and block ionomer complexes for gene delivery: physico-chemical aspects. Advanced Drug Delivery Reviews, 1998. 30(1): p. 49-60.
43. Bütün, V., N.C. Billingham, and S.P. Armes, Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer:  Formation of Micelles and Reverse Micelles in Aqueous Solution. Journal of the American Chemical Society, 1998. 120(45): p. 11818-11819.
44. L. M. Bronstein, S. N. Sidorov, A. Y. Gourkova, P. M. Valetsky, J. Hartmann, M. Breulmann, H. Co¨lfen, M. Antonietti, Inorg. Chim. Acta 1998, 280, 348
45. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
46. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
47. K. Matyjaszewski, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45 (2012) 4015-4039.
48. N.V. Tsarevsky, K. Matyjaszewski, "Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials, Chem Rev, 107 (2007) 2270- 2299.
49. Wei, Q., 14 - Emerging approaches to the surface modification of textiles, in Surface Modification of Textiles, Q. Wei, Editor. 2009, Woodhead Publishing. p. 318-323.
50. A.B. Lowe, C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, 32 (2007) 283-351.
51. G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
52. G. Moad, E. Rizzardo, S.H. Thang, Radical addition–fragmentation chemistry in polymer synthesis, Polymer, 49 (2008) 1079-1131.
53. Le, T. P.; Moad, G.; Rizzardo, E.; Thang, S. H. Polymerization with living characteristics. WO9801478, 1998 (Chem. Abstr. 1998, 128, 115390f).
54. R.T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, S.H. Thang, Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps, Macromolecules, 33 (2000) 243-245.
55. G. Moad, E. Rizzardo, S.H. Thang, Living radical polymerization by the RAFT process–a third update, Australian Journal of Chemistry, 65 (2012) 985- 1076
56. G. Moad, E. Rizzardo, S.H. Thang, Toward living radical polymerization, Accounts of chemical research, 41 (2008) 1133-1142.
57. G. Moad, Y.K. Chong, A. Postma, E. Rizzardo, S.H. Thang, Advances in RAFT polymerization: the synthesis of polymers with defined end-groups, Polymer, 46 (2005) 8458-8468.
58. Keddie, D.J., et al., RAFT Agent Design and Synthesis. Macromolecules, 2012. 45(13): p. 5321-5342.
59. Lowe, A.B. and C.L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): p. 283-351.
60. Lewis, D., G. Moad, and E. Rizzardo, Living Radical Polymerization by the RAFT Process. Vol. 58. 2005.
61. A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, J.M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS, Polymer Chemistry, 6 (2015) 5437-5450.
62. V. Mishra, R. Kumar, Living radical polymerization: A review, Journal of Scientific Research, 56 (2012) 141-176.
63. Bawa, R., et al., Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine: Nanotechnology, Biology and Medicine, 2005. 1(2): p. 150-158.
64. Kreuter, J., Nanoparticles—a historical perspective. International Journal of Pharmaceutics, 2007. 331(1): p. 1-10.
65. Ramezanpour, M., et al., Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016. 1858(7, Part B): p. 1688-1709.
66. Petrushev, B., et al., Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy. International journal of nanomedicine, 2016. 11: p. 641-660.
67. Wang, M., et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(11): p. 2868-2873.
68. Inci, F., et al., Nanoplasmonic Quantitative Detection of Intact Viruses from Unprocessed Whole Blood. ACS Nano, 2013. 7(6): p. 4733-4745.
69. Seo, S.-H., et al., Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosensors and Bioelectronics, 2015. 64: p. 69-73.
70. Qi, P., et al., Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection. Talanta, 2016. 147: p. 142-146.
71. Moser, F., et al., Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophysical journal, 2016. 110(4): p. 947-953.
72. Hatzfeld, J., Fluctuations of diphenylamine-DNA in yeast. Journal of Cellular Physiology, 1974. 83(1): p. 159-161.
73. Choi, C.H.J., et al., Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(3): p. 1235-1240.
74. Wilczewska, A.Z., et al., Nanoparticles as drug delivery systems. Pharmacological Reports, 2012. 64(5): p. 1020-1037.
75. Bazak, R., et al., Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and clinical oncology, 2014. 2(6): p. 904-908.
76. Patel, A., K. Cholkar, and A.K. Mitra, Recent developments in protein and peptide parenteral delivery approaches. Therapeutic delivery, 2014. 5(3): p. 337-365.
77. Xu, W., P. Ling, and T. Zhang, Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of drug delivery, 2013. 2013: p. 340315-340315.
78. Joseph, M., H.M. Trinh, and A.K. Mitra, Chapter 7 - Peptide and Protein-Based Therapeutic Agents∗, in Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, A.K. Mitra, K. Cholkar, and A. Mandal, Editors. 2017, Elsevier: Boston. p. 145-167.
79. Roucoux, A., J. Schulz, and H. Patin, Reduced Transition Metal Colloids:  A Novel Family of Reusable Catalysts? Chemical Reviews, 2002. 102(10): p. 3757-3778.
80. Bronstein, L.M., et al., Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorganica Chimica Acta, 1998. 280(1): p. 348-354.
81. Maji, T., et al., Dual-Stimuli-Responsive l-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015. 48(14): p. 4957-4966.
82. Yusa, S.-i., et al., Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules, 2005. 6(2): p. 663-670.
83. Nehilla, B.J., et al., A Stimuli-Responsive, Binary Reagent System for Rapid Isolation of Protein Biomarkers. Anal Chem, 2016. 88(21): p. 10404-10410.
84. Volkmann, L., et al., Poly(2-acrylamidoglycolic acid) (PAGA): Controlled Polymerization Using RAFT and Chelation of Metal Cations. Macromolecules, 2018. 51(18): p. 7284-7294.
85. Zhao, L., et al., In vitro characterization of pH-sensitive Bletilla Striata polysaccharide copolymer micelles and enhanced tumour suppression in vivo. J Pharm Pharmacol, 2018. 70(6): p. 797-807.
86. Jackson, C.L., et al., Visualization of Dendrimer Molecules by Transmission Electron Microscopy (TEM):  Staining Methods and Cryo-TEM of Vitrified Solutions. Macromolecules, 1998. 31(18): p. 6259-6265.
87. Huang, C.J., et al., Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance. ACS Appl Mater Interfaces, 2015. 7(42): p. 23776-86.
88. Xiong, D., et al., Influence of surface PMPC brushes on tribological and biocompatibility properties of UHMWPE. Applied Surface Science, 2014. 298: p. 56-61.
89. Henchoz, Y., Schappler, J., Geiser, L. et al. Anal Bioanal Chem (2007) 389: 1869. https://doi.org/10.1007/s00216-007-1568-5
90. S.H Chen; T.-L. Lin, Methods of Experimental Physics - Neutron Scattering in Condensed Matter Research; Eds. Skod, K.; Price, D.L. Academic Press: New York, 1987; Vol. 23B, Chapter 16.
91. Sinkó, K., V. Torma, and A. Kovács, SAXS investigation of porous nanostructures. Journal of Non-Crystalline Solids, 2008. 354(52): p. 5466-5474.
92. Jensen, H., et al., Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. Journal of Experimental Nanoscience, 2006. 1(3): p. 355-373.
93. Leite, F.L., et al., Nanoscale conformational ordering in polyanilines investigated by SAXS and AFM. Journal of Colloid and Interface Science, 2007. 316(2): p. 376-387.
94. Daniel, K.G., et al., Organic copper complexes as a new class of proteasome inhibitors and apoptosis inducers in human cancer cells. Biochemical Pharmacology, 2004. 67(6): p. 1139-1151.
95. Srinivas, G., D.E. Discher, and M.L. Klein, Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 2004. 3(9): p. 638-644.
96. Beckmann, L.S. and B.N. Day, Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium. Theriogenology, 1993. 39(3): p. 611-622.
97. Watson, P.F. and A.E. Duncan, Effect of salt concentration and unfrozen water fraction on the viability of slowly frozen ram spermatozoa. Cryobiology, 1988. 25(2): p. 131-142.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明