博碩士論文 106622014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.128.24.183
姓名 蔡仲霖(Chung-Lin Tsai)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 高屏峽谷極上游區域峽谷侵蝕與泥貫入體活動之交互關係研究
(Interaction of canyon erosion and mud diapir activity in the uppermost Kaoping submarine canyon)
相關論文
★ 琉球隱沒帶最南段隱沒沉積物物理性質之研究★ 基於深度學習的反射震測速度分析
★ 利用2.5 維密集式高解析電火花震測法研究高屏峽谷極上游區域的海床侵蝕作用★ 南海北部大陸邊緣震測地層與構造演化之研究
★ 利用多頻道電火花反射震測法研究南高屏陸坡區域沉積構造與演化過程★ 琉球隱沒帶最南段由隱沒過渡至碰撞 走向滑移斷層構造研究
★ 高屏峽谷源頭區域近一萬年以來淺層高解析地質構造之研究★ 臺南盆地自始新世以來沉積層序發育過程及構造演化歷史
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海底峽谷為陸上沉積物進入深海的主要通道,在沉積物從源到匯的系統中扮演著重要的角色。台灣西南外海的高屏峽谷始於陸上高屏溪,流經高屏陸棚和斜坡最後沒入馬尼拉海溝。每年台灣西南部受到劇烈天氣變化(例如:颱風)帶來的強降雨經由高屏溪將高濃度沉積物帶入高屏峽谷,並在峽谷源頭部分形成濁流或異重流。前人透過傳統反射震測搭配水深地形來研究高屏峽谷整個流域的地形與構造,並認為在峽谷上游的濁流引發邊坡崩塌並形成U型谷的特徵,但由於傳統震測震源較為低頻的限制,對於近海床淺層地層幾乎無解析能力。因此,本研究透過使用較高解析度的電火花放電反射震測法,針對高屏溪出海口至小琉球之間的高屏峽谷極上游,產生濁流的源頭的區域,蒐集二十條電火花反射震測資料並進行資料分析。其資料分析結果顯示,本研究的研究區域根據震測相分析可以大致區分為五種震測相:低水位體系、末次冰期(Last Glacial Maximun; LGM)侵蝕面、海進體系、高水位體系及泥貫入體。其中,低水位體系具有強反射且連續性高向海的進積構造,而海進體系則是強反射且連續性高的水平地層。另外,海進體系與低水位體系間呈現交角不整合,震測反射相為強反射且連續性良好,可推測該不整合面應為末次冰期之侵蝕面。另外,覆蓋於海進體系之上的則是反射強度及連續性均較弱的進積構造,推測應為高水位體系沉積。綜合比較峽谷南北兩側地形及地層構造,可發現相較於峽谷西北側,近小琉球區域峽谷東南側邊坡處於峽谷攻擊面,地形平均較北側低窪約四十公尺,地形呈現U型凹陷,該處地層中的高水位體系完全缺失,僅剩數十公尺薄層海進體系存在,此表示峽谷東南側應長年遭受侵蝕。另外,該處同時可觀察到泥貫入體出露至地表形成泥火山,泥貫入體的活動也使得峽谷南側邊坡易於崩塌。因此,綜合上述觀察,本研究認為在高屏峽谷極上游區域,峽谷西北側應處於穩定堆積環境,而峽谷東南側應長年受峽谷濁流溢流的沖刷下,為侵蝕環境。而泥貫入體引致邊坡崩塌的沉積物亦可能為濁流的來源之一。
摘要(英) As a major pathway of the sediment transportation to deep sea, submarine canyon plays an important role on the source-to-sink, terrestrial-to-marine dispersal system. Kaoping submarine canyon (KPSC) is located on southwestern offshore Taiwan. It originates from the Kaoping River (KPR) mouth through the Kaoping shelf and slope then merges to the northeastern Manila Trench. Because of the dramatic climate change in the southern Taiwan (e.g. strong typhoon triggers flooding or moonson), huge amount of highly concentrated sediments carried by KPR into KPSC may develop turbidity current or hyperpycnal flow in the canyon head. Aithough previous studies using traditional reflective seismic and bathymetry to understand the morphology and structures in KPSC region, and they indicated that slope failures is caused by turbidity current and formed U-shaped valley in the upper canyon. Due to limitation of the seismic source (i.e. central frequency is 50 Hz), near seafloor sedimentary seqences cannot be revealed. We rather used alternative and high resolution marine geophysical exploration method, sparker reflective seismic method in this study. Twenty seismic sections were acquired and analyzed across and prepenticular to the uppermost Kaoping submarine canyon in particular focusing on the area of turbidity current occorence. The results show that five basic standard seismic stratigraphic sequences were identified : (1) Lowstand System Tract (LST); (2) Transgreesive System Tract (TST); (3) Highstand System Tract (HST); (4) Last Glacial Maximun (LGM) uncomformity and (5) Mud diapirism. The LST is characterized high amplitude, continuous and propagating toward to sea, the TST is also high amplitude, continuous but parallel to the seafloor. The LGM is high amplitude and continuous as an angular uncomformity beteen LST and TST. The HST is instead lowest amplitude and dis-continuous amongst the study area. Furthermore, about 40 meters and U-shaped depression was identified in the southern bank of the canyon with respect to the northern bank, HST was gone with thin LST in the southern bank, which indicates a strong and continuous erosion occurred in the south. We suggested that may be the result of canyon overbanking flow erosion. In addition, mud diapirsim also caued slope failure and seafloor depression in the south. The deposits of the slope failure may be one of the sources on turbidity current.
關鍵字(中) ★ 高屏峽谷
★ 峽谷溢流
★ 泥貫入體
★ 邊坡滑移
關鍵字(英)
論文目次 中文摘要……………………………………..…………………………………………...I
Abstract…………………………………………………………………….….………..III
誌謝……………………………………………………………………………….….….V
目錄…………………………………………………………………..…………………VI
表目錄…………………………………………………………………….….….……...IX
圖目錄…………………………………………………………………………….…......X
第一章 緒論……………………………………………………………………….....….1
1.1 研究區域地質環境……………………………………………….…………….….1
1.1.1 海底峽谷………………………………………………………………..…......1
1.1.2 高屏峽谷………………………………………………………………..…......2
1.1.3 高屏峽谷內沉積物活動…………………………………………….….……..3
1.2 研究動機與目的……………………………………………………………..…….4
第二章 研究方法與資料處理…………………………………………………….…...14
2.1 電火花放電反射震測 (Sparker Seismic Reflection System)資料…….….……...14
2.1.1 電火花放電反射震測系統介紹……………………………….……….……14
2.1.2 電火花放電反射震測資料蒐集…………………………………….….……15
2.1.3 電火花放電反射震測資料處理流程……………….…………………..…...16
第三章 震測剖面與解釋……………………………………………………….……...33
3.1 震測相分析與解釋……………………………………………………….….…...33
3.1.1 五種震測相分析與解釋…………………………………………….….……33
3.2 震測剖面解釋………………………………………………………….…….…...35
3.2.1 東北-西南向垂直於大陸斜坡剖面解釋………………………………….....35
3.2.1.1 CR-Line01……………………………………………….…………........35
3.2.1.2 CR-Line07………………………………………………….…..……......37
3.2.2 西北-東南向水平線剖面解釋 ……………………………….…….….….....39
3.2.2.1 Line03 ……………………………………………………….………..…39
3.2.2.2 Line05 ……………………………………………………….……..……39
3.2.2.3 Line06 ……………………………………………………………...…....40
3.2.2.4 Line07 …………………………………………………………...………40
3.2.2.5 Line08 …………………………………………………………...………41
3.2.2.6 Line10 ………………………………………………………….…..…....41
3.2.2.7 Line12 ……………………………………………………….……..…....42
3.2.2.8 Line14 ………………………………………………………….……..…43
3.2.2.9 Line17 ……………………………………………………………..…….43
3.2.2.10 Line18 …………………………………………………………....…….44
3.2.2.11 Line19 …………………………………………………………….........44
3.2.2.12 Line20 …………………………………………………………...…......45
3.2.2.13 Line21 …………………………………………………………..….......46
3.2.2.14 Line22 ……………………………………………………….…..…......46
3.2.2.15 Line23 ……………………………………………………….…..…......47
3.2.2.16 Line25 ………………………………………………………….…........47
3.2.2.17 Line26 ……………………………………………………….…..…......48
3.2.2.18 Line27 …………………………………………………….……..…......49
3.3 末次冰期不整合面深度與沉積物厚度分布………………………………….50
3.3.1 末次冰期不整合面深度分布……………………………………………...50
3.3.2 海進體系與高水位體系沉積物厚度分布………………………………...50
第四章 討論.……………………………………………………………….………....100
4.1 峽谷溢流.………………………………………………………………..……....100
4.1.1 峽谷溢流的證據……………………………………….………..……….…100
4.1.2 峽谷溢流的源到匯 (Source-to-sink)………………….……………….…...101
4.2 LGM不整合面深度討論…………………………………………………..…...102
4.3 泥貫入體對峽谷邊坡穩定度的影響…………………………….…………......102
第五章 結論.……………………………………………………………………….....113
參考文獻.……………………………………………………………………...............114
參考文獻 Amblas, D., Ceramicola, S., Gerber, T. P., Canals, M., Chiocci, F. L., Dowdeswell, J. A., Harris, P. T., Huvenne, V. A., Lai, S.-Y., and Lastras, G., Submarine canyons and gullies, Submarine Geomorphology, Springer, pp. 251-272, 2018.
Carter, L., Milliman, J., Talling, P., Gavey, R., and Wynn, R., “Near‐synchronous and delayed initiation of long run‐out submarine sediment flows from a record‐breaking river flood, offshore Taiwan”, Geophysical Research Letters, Vol 39, L12603, June 2012.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., and Lee, Y.-W., “Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan”, Journal of Asian Earth Sciences, Vol 92, pp. 201-214, October 2014.
Chiang, C.-S., and Yu, H.-S., “Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge”, Geomorphology, Vol 80, no. 3-4, pp. 199-213, October 2006.
Chiang, C.-S., and Yu, H.-S., “Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan”, Geo-Marine Letters, Vol. 28, no. 3, pp. 161-169, June 2008.
Chiang, C.-S, and Yu, H.-S., “Sedimentary erosive processes and sediment dispersal in Kaoping submarine canyon”, Science China Earth Sciences, Vol. 54, no. 2, pp. 259-271, February 2011.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., Hu, J.-C., Horng, M.-J., Chen, M.-C., and Stark, “Links between erosion, runoff variability and seismicity in the Taiwan orogen”, Nature, Vol. 426, no. 6967, pp. 648, December 2003.
Duchesne, M. J., Bellefleur, G., Galbraith, M., Kolesar, R., and Kuzmiski, R., “Strategies for waveform processing in sparker data”, Marine Geophysical Researches, Vol. 28, no. 2, pp. 153-164, June 2007.
Fildani, A., Normark, W. R., Kostic, S., and Parker, G., “Channel formation by flow stripping: Large‐scale scour features along the Monterey East Channel and their relation to sediment waves”, Sedimentology, Vol. 53, no. 6, pp. 1265-1287, December 2006.
Harris, P. T., and Whiteway, T., “Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins”, Marine Geology, Vol. 285, no. 1-4, pp. 69-86, July 2011.
Ho, C.-S., “An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan”, Central Geological Survey, pp. 151-152, 1988.
Hsiung, K.-H., Yu, H.-S., and Chiang, C.-S., “The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development”, Geomorphology Vol. 300, pp. 151-163, January 2018.
Hsu, S.-K., Kuo, J., Chung-Liang, L., Ching-Hui, T., Doo, W.-B., Ku, C.-Y., Sibuet, J.-C., “Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan”, Terr. Atmos. Ocean. Sci., Vol. 19, no. 6, pp. 7, December 2008.
Kluesner, J., Brothers, D., Hart, P., Miller, N., and Hatcher, G., “Practical approaches to maximizing the resolution of sparker seismic reflection data”, Marine Geophysical Research, pp. 1-23, 2018.
Liu, C.-S., Lundberg, N., Reed, D. L., and Huang, Y.-L., “Morphological and seismic characteristics of the Kaoping Submarine Canyon”, Marine Geology, Vol. 111, no. 1-2, pp. 93-108, April 1993.
Maier, K. L., Johnson, S. Y., and Hart, P., “Controls on submarine canyon head evolution: Monterey Canyon, offshore central California”, Marine Geology, Vol. 404, pp. 24-40, October 2018.
Micallef, A., Mountjoy, J. J., Barnes, P. M., Canals, M., and Lastras, G., “Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system, New Zealand”, Geosphere Vol. 10, no. 5, pp. 905-929, October 2014a.
Micallef, A., Ribó, M., Canals, M., Puig, P., Lastras, G., and Tubau, X., “Space-for-time substitution and the evolution of a submarine canyon–channel system in a passive progradational margin”, Geomorphology Vol. 221, pp. 34-50, September 2014b.
Milliman, J. D., and Syvitski, J. P. J., “Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers”, The Journal of Geology, Vol. 100, no. 5, pp. 525-544, September 1992.
Mosher, D. C., and Simpkin, P. G., “Environmental marine Geoscience 1. Status and trends of marine high-resolution seismic reflection profiling: Data acquistion”, Geoscience Canada, Vol. 26, no. 4, December 1999.
Mulder, T., and Syvitski, J. P. J., “Turbidity currents generated at river mouths during exceptional discharges to the world oceans”, The Journal of Geology, Vol. 103, no. 3, pp. 285-299, May 1995.
Puig, P., Durán, R., Muñoz, A., Elvira, E., and Guillén, J., “Submarine canyon-head morphologies and inferred sediment transport processes in the Alías-Almanzora canyon system (SW Mediterranean): On the role of the sediment supply”, Marine Geology Vol. 393, pp. 21-34, Noverber 2017.
Qin, Y., Alves, T. M., Constantine, J., Gamboa, D., “Quantitative seismic geomorphology of a submarine channel system in SE Brazil (Espírito Santo Basin): Scale comparison with other submarine channel systems”, Marine and Petroleum Geology, Vol. 78, pp. 455-473, December 2016.
Shepard, F. P., “Submarine canyons: multiple causes and long-time persistence”, AAPG Bulletin Vol. 65, no. 6, pp. 1062-1077, June 1981.
Smith, J., Andersen, T. J., Shortt, M., Gaffney, A., Truffer, M., Stanton, T., Bindschadler, R., Dutrieux, P., Jenkins, A., and Hillenbrand, C.-D., “Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier”, Nature Vol. 541, no. 7635, pp. 77, January 2017.
Su, C.-C., Hsu, S.-T., Hsu, H.-H., Lin, J.-Y., Dong, J.-J., “Sedimentological characteristics and seafloor failure offshore SW Taiwan”, Terr. Atmos. Ocean. Sci., Vol. 29, no. 1, pp. 65-76, February 2018.
Talling, P. J., Paull, C. K., and Piper, D. J., “How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows”, Earth-Science Reviews, Vol. 125, pp. 244-287, October 2013.
Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W., Cartigny, M. J., Clare, M. A., Felletti, F., Covault, J. A., Girardclos, S., and Hansen, E. J., “Key future directions for research on turbidity currents and their deposits”, Journal of Sedimentary Research Vol. 85, no. 2, pp. 153-169, February 2015.
Van Wagoner, J. C, Posamentier, H., Mitchum, R., Vail, P., Sarg, J., Loutit, T., and Hardenbol, J., “An overview of the fundamentals of sequence stratigraphy and key definitions”, Soc. Econ. Paleontol. Mineral. Spec. Publ., Vol. 42, pp. 39-46, 1988.
Van Wagoner, J. C., Mitchum, R., Campion, K., and Rahmanian, V., “Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies”, The American Association of Petroleum, Vol. 7, pp. 55, 1990.
Vesely, F. F. J. B., “Seismic expression of depositional elements associated with a strongly progradational shelf margin: northern Santos Basin, southeastern Brazil”, Brazilian Journal of Geology, Vol. 46, no. 4, pp. 585-603, 2016.
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., McManus, J., Lambeck, K., Balbon, E., and Labracherie, M., “Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records”, Quaternary Science Reviews, Vol. 21, no. 1-3, pp. 295-305, January 2002.
Yilmaz, Ö., Seismic data analysis: Processing, inversion, and interpretation of seismic data, Society of exploration geophysicists, 2001.
Yu, H.-S., Huang, C., and Ku, J.-J., “Morphology and possible origin of the Kaoping submarine canyon head off southwest Taiwan”, Acta Oceanographica Taiwanica, no. 27, pp. 40-50, September 1990.
Yu, S.-W., Tsai, L.-L., Talling, P. J., Lin, A. T., Mii, H.-S., Chung, S.-H., and Horng, C.-S., “Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan”, Marine Geology, Vol. 392, pp. 140-150, October 2017.
陳松春,臺灣西南海域上部高屏斜坡泥貫入體及泥火山之分布及相關海床特徵,國立中央大學地球科學系博士論文,共132頁,民國102年。
指導教授 葉一慶(Yi-Ching Yeh) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明