博碩士論文 106523025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.218.254.84
姓名 萬家妤(Chia-Yu Wan)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於長短期記憶神經網路之綠能無線通訊系統功率控制研究
(Long Short-Term Memory Network-based Power Control for Green Wireless Communications)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著物聯網的日益普及,由於無線通訊裝置上的電池儲存空間有限,其能源消耗成為一個具有挑戰性的問題。由於能源獵取技術的出現,通過從太陽能等環境中獵取和儲存可充式電池的能量,可以有效地解決這問題。傳統的方法是規劃在未來一段時間內的能量使用的情況,稱為能量獵取通訊的功率控制,也就是採用所謂的凸優化(Convex Optimization)技術。該方案需要已知未來能量獵取和通道增益資訊,難以在實際應用中實現。因此在本文中,吾人設計一種基於深度學習的單用戶和多用戶能量獵取通訊框架,而該框架只需已知當前能量獵取和通道增益的資訊,便可預測未來功率控制值的方法。以單用戶例子來說,吾人利用以前太陽能數據通過凸優化計算得到最佳解,然後將其輸入長短期記憶網路(Long Short-Term Memory)訓練,來預測未來功率控制值。延伸單用戶系統,吾人利用加權和最小均方差(WMMSE)演算法得到的功率控制參考解,研究一種基於長短期記憶網路多用戶功率控制方案。最後通過電腦模擬驗證了所提出的基於長短期記憶網路的功率控制方案的有效性。實驗結果表明,與貪婪功率控制方案相比,吾人所提出基於長短期記憶網路的功率控制方案能夠獲得更好的系統吞吐量。
摘要(英) With the increasing prevalence of Internet of things, the energy consumption problem in becomes a challenging issue due to the limited battery storage on wireless communication devices. Thanks to the emergence of energy harvesting techniques, this problem can be efficiently solved by scavenging and storing energy in rechargeable batteries from ambient environments like solar. A conventional approach to schedule the energy usage over the future of a period of time, which is also called control power in energy harvesting communications, is to apply the convex optimization technique. This scheme relies on the perfect knowledge of the future information of energy harvesting conditions and channel gains control, which makes it difficult to be implemented in real applications. In this thesis, deep learning design frameworks, which only require the past knowledge of energy harvesting and channel conditions, are proposed to predict the future power control values in single-user and multi-user energy harvesting communications. For the single-user case, we utilize the historical solar data to calculate the optimal solutions via convex optimization, which is then used in the training of a long short-term memory network (LSTM) for predicting power control values. As an extension, an LSTM-based power control scheme is investigated in the multi-user scenario by using the reference power control solutions obtained from a weighted sum minimum mean-square-error (WMMSE) algorithm. The effectiveness of the proposed LSTM-based power control schemes is finally evaluated by computer simulations, and the results show that the proposed schemes can achieve sufficient good system throughput as compared with the baseline solutions.
關鍵字(中) ★ 能量獵取
★ 最佳化功率控制
★ 深度學習
★ 長短期記憶神經網路
關鍵字(英) ★ energy harvesting
★ optimal power control
★ deep learning
★ long short-term memory
論文目次 目錄
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2 文獻探討 4
1.2.1無線通訊系統最佳傳輸策略 4
1.2.2深度學習及相關應用 5
第二章 系統模型介紹 7
2.1能量獵取介紹 7
2.1.1能量獵取無線通訊模型 7
2.2 Jakes衰減通道模型 8
2.3長短期記憶神經網路(Long Short-Term Memory, LSTM) 9
2.4深度神經網路模型設計 11
第三章 單用戶綠能無線通訊功率控制預測 13
3.1太陽能能量獵取大數據 13
3.2單用戶能量獵取無線通訊系統模型 14
3.3最佳化問題 15
3.4單用戶能量獵取無線通訊凸優化功率控制策略 16
3.5基於長短期記憶神經網路之單用戶綠能無線通訊功率控制預測
19
3.5.1數據產生 19
3.5.2輸入輸出資料序列處理 20
3.5.3長短期記憶神經網路訓練 21
3.5.4單用戶功率控制預測 24
第四章 多用戶綠能無線通訊功率控制預測 26
4.1多用戶能量獵取無線通訊系統模型 26
4.2最佳化問題 27
4.3加權和最小均方差(WMMSE) 28
4.4多用戶綠能無線通訊功率控制預測 30
4.4.1數據產生 31
4.4.2輸入輸出資料序列處理 31
4.4.3多用戶集中式功率控制預測 32
第五章 模擬結果 34
5.1單用戶基於長短期記憶神經網路功率控制模擬結果 34
5.1.1加性白高斯雜訊模擬結果 34
5.1.2 Jakes通道衰減模擬結果 37
5.2多用戶基於長短期記憶神經網路功率控制模擬結果 39
5.2.1雙用戶模擬結果 39
5.2.2三用戶模擬結果 42
第六章 結論 45
附錄A 46
參考文獻 47
參考文獻 [1] P.J. Werbos, R. Kozma, C. Alippi, Y. Choe, F.C. Morabito, “The New AI: Basic Conceptsand Urgent Risks and Opportunities in the Internet Of Things,” Artificial Intelligence in the Age of Neural Networks and Brain Computing, 2018.

[2] I. Bhattacharya,L.Getoor,“Entity Resolution, Encyclopedia of Machine Learning and Data Mining,” 2017, pp. 402-408, 2017

[3] J. Lu , H. Okada , T. Itoh , R. Maeda , and T. Harada, “Towards the world smallest wireless sensor nodes with low power consumption for ‘Green’ sensor networks,”IEEE ICSENS, Baltimore.MD.USA ,Nov. 2013.

[4] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: optimal policies,”IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sept. 2011.

[5] M.-L. Ku, Y. Chen and K. J. R. Liu,“Data-driven stochastic models and policies for energy harvesting sensor communications,”to appear in IEEE J. Sel. Areas Commun : Wireless Commun., Powered by Energy Harvesting and Wireless
Energy Transfer, Dec. 2014.

[6] Keshav Singh, M-L, Ku J-Chia Lin and T.Ratnarajah, “Toward Optimal Power Control and Transfer for Energy Harvesting Amplify-and-Forward Relay Networks,” to appear in IEEE Transactions on Wireless Communications., Vol: 17 , no. 8 , Aug.2018

[7] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59,no. 9, pp. 4331–4340, Sep. 2011.

[8] S. Serbetli and A. Yener, “MMSE transmitter design for correlated MIMO systems with imperfect channel estimates: power allocation trade-offs,” IEEE Trans. Wireless Commun., vol. 5, no. 8, pp.2295–2304, Aug. 2006.

[9] C.S.Hsu, and J.R. Jiang “Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning, ” IEEE ICASI., 2018

[10] A.Kuzmiakova, G.Colas, and A. McKeehan “Short-term Memory Solar Energy Forecasting at University of Illinois, ”Dec.2017

[11] Sujin Cui.“Solar energy prediction and task scheduling for wireless sensor nodes based on long short term memory,” IOP Conf. Series: Journal of Physics: Conf. Series 1074 (2018) 012100 doi :10.1088/1742-6596/1074/1/012100 ,MEIE 2018

[12] Xiaoyun Tong and Songlin Sun. “Long Short-Term Memory Network for Wireless Channel Prediction,” Springer Nature Singapore Pte Ltd. S. Sun et al. (eds.), 2018

[13] Hernandez Villapol, Jorge Luis. “Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios. Master of Science ,” pp, 2, 31,Dec 2017

[14] N.Lee, X. Lin, J. G. Andrews, and R. W. Heath, Jr., “Power control for D2D underlaid cellular networks: Modeling, algorithms, and analysis,”IEEE J. Sel. Areas Commun., vol. 33, no. 1, pp. 1–13, Jan. 2015.

[15] W.Lee, M. Kim, and D. H. Cho,“Deep power control: Transmit power control scheme based on convolutional neural network,” IEEE Commun. Lett, vol. 22, no. 6, pp. 1276–1279, 2018.

[16] Woongsup Lee, Ohyun Jo, and Minhoe Kim,“Application of End-to-End Deep Learning in Wireless Communications Systems,” arXiv preprint arXiv:1808.02394v1, 2018.

[17] B. Atwood, B. Warneke, and K. S. J. Pister,“Smart Dust mote forerunners,” in Proc. IEEE ICMS,01, pp. 357–360, Jan. 2001.

[18] M.-L. Ku, W. Li, Y. Chen, and K. R. Liu,“Advances in energy harvesting communications: Past, present, and future challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1384–1412, 2nd Quart.,2016.

[19] Yahong Rosa Zheng, Chengshan Xiao,“Simulation models with correct statistical properties for Rayleigh fading channels,” Communications IEEE Transactions on, vol. 51, no. 6, pp. 920-928, 2003.

[20] S. Hochreiter and J. Schmidhuber,“Long short-term memory,” Neural Computation, Volume 9, Issue 8, 1997, p.1735-1780

[21] An end-to-end open source machine learning platform [Online]. Available: https://www.tensorflow.org/

[22] NREL. Solar radiation resource information, Golden, CO,USA. [Online]. Available: http://www.nrel.gov/rredc/

[23] R. D. Rugescu, Solar Power, InTech, 2012.

[24] Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. “Long short-term memory neural network for traffic speed prediction using remote microwave sensor data.,”Transportation Research Part C: Emerging Technologies, Vol. 54, 2015, pp. 187-197.

[25] Graves A, Jaitly N.“Towards end-to-end speech recognition with recurrent neural networks[C]// International Conference on Machine Learning ,” 2014:1764-1772.

[26] R. K. Agrawal, F. Muchahary, M. M. Tripathi,“Long term load forecasting with hourly predictions based on long-short-term-memory networks,”IEEE Texas Power and Energy Conference (TPEC), 2018.

[27] D. P. Kingma and B. Jimmy,“Adam: A Method for Stochastic Optimization,” 3rd International Conference for Learning Representations, San Diego, 2015.

[28] D. Guo, S. Shamai, and S. Verdu,“Mutual information and minimum mean- square error in Gaussian channels,”IEEE Trans.Inform. Theory, vol. 51, no. 4, pp. 1261-1282, Apr. 2005.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明