博碩士論文 106522013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.220.50.218
姓名 翁健軒(Jian-Xuan Weng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合早期預警和影片推薦機制改善學生學習成效
(Combining early warning and video recommendation mechanisms to improve students’ learning performance)
相關論文
★ 應用智慧分類法提升文章發佈效率於一企業之知識分享平台★ 家庭智能管控之研究與實作
★ 開放式監控影像管理系統之搜尋機制設計及驗證★ 資料探勘應用於呆滯料預警機制之建立
★ 探討問題解決模式下的學習行為分析★ 資訊系統與電子簽核流程之總管理資訊系統
★ 製造執行系統應用於半導體機台停機通知分析處理★ Apple Pay支付於iOS平台上之研究與實作
★ 應用集群分析探究學習模式對學習成效之影響★ 應用序列探勘分析影片瀏覽模式對學習成效的影響
★ 一個以服務品質為基礎的網際服務選擇最佳化方法★ 維基百科知識推薦系統對於使用e-Portfolio的學習者滿意度調查
★ 學生的學習動機、網路自我效能與系統滿意度之探討-以e-Portfolio為例★ 藉由在第二人生內使用自動對話代理人來改善英文學習成效
★ 合作式資訊搜尋對於學生個人網路搜尋能力與策略之影響★ 數位註記對學習者在線上學習環境中反思等級之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以ilearning線上學習平台的一門系統程式課程為研究目標,實驗包含兩大主軸:早期預警及影片教材推薦。研究中提出一套推薦機制,結合早期預警之結果和影片推薦清單,在適當的時機給予學生,以提升學生的學習效率,並改善學生的學習成效。
早期預警包含干預時機的選擇及預測準確度兩大要素,本論文蒐集近五年學生的線上學習歷程、課程大綱、作業及考試成績,從中萃取出特徵,利用主成分迴歸(Principal Component Regression, PCR)建立學習成效預測模型,再觀察pMSE的預測指標,找出最佳的干預時間點。
另一方面,本研究比較八種分類演算法,以accuracy、precision、recall、f1-score和AUC作為評估模型好壞的指標,並區分出高風險學生,最後於推薦清單中,給予適性化的警示話語提醒學生。
影片教材推薦是透過學生的線上學習歷程及測驗作答情形,給予學生適性化推薦清單,以期望達到改善學生學習成效的目標。實驗結果顯示,搭配問卷分群結果發現,在中度學習動機和中度學習興趣的學生族群當中,在進步成績的表現上,實驗組學生顯著優於控制組,代表本推薦機制對於特定族群的學生具有顯著的影響。
摘要(英) This study is based on a System Programming course of the ilearning online learning platform. The experiment consists of two main purposes: early warning and video recommendation. In this study, a recommendation mechanism was proposed, which combined the results of early warning and the list of recommended videos to give students at the right time to improve students′ learning efficiency and improve their learning outcomes.
Early warning includes two factors: the timing of intervention and the accuracy of prediction. This paper collects online learning history, syllabus, homework and test scores of students in the past five years, extracts features from it, and uses Principal Component Regression (PCR) to establish a learning effectiveness prediction model, and then observe the prediction indicators named pMSE to find the best intervention time point.
On the other hand, this study compares eight classification algorithms, using accuracy, precision, recall, f1-score, and AUC as indicators to evaluate the quality of the model, and distinguishes high-risk students, and finally gives appropriateness alert words to remind students.
The video recommendation is to give students a suitable recommendation list through the online learning process and test answering situation of the students, in order to achieve the goal of improving the learning performance of the students. The experimental results show that the results of the grouping with the questionnaire found that among the student populations with moderate learning motivation and moderate learning interest, the experimental group students were significantly better than the control group. It means that the recommendation mechanism for students of specific groups of students has a significant impact.
關鍵字(中) ★ 適性化推薦
★ 主成分迴歸
★ 評分策略
★ 學習成效預測
★ 多元分類
★ 學習風險識別
關鍵字(英) ★ Adaptive Recommendation
★ PCR
★ Grading Policy
★ Students’ Learning Performance Prediction
★ Multi-class Classification
★ At-risk Students Identification
論文目次 摘要 i
ABSTRACT ii
圖目錄 vi
表目錄 vii
一、 前言 1
二、 文獻探討 2
2.1 學習成效預測 (Learning Performance Prediction) 2
2.2 問卷 (Questionnaires) 4
三、 研究方法 4
3.1 系統架構圖 4
3.1.1 資料收集 5
3.1.1.1 數位學習系統 (ilearning system) 5
3.1.1.2 學務系統 (student affair system) 5
3.1.1.3 連續機率比檢定 (Sequential Probability Ratio Test, SPRT) 6
3.1.2 資料儲存 6
3.1.2.1 數位學習系統 (ilearning system) 6
3.1.2.2 學務系統 (student affair system) 7
3.1.2.3 連續機率比檢定 (Sequential Probability Ratio Test, SPRT) 8
3.1.3 資訊萃取 8
3.1.3.1 特徵萃取 8
3.1.3.2 模型建立 9
3.1.3.3 評估指標 9
3.1.4 資訊應用 11
3.2 SPRT (Sequential Probability Ratio Test) 11
3.3 多元迴歸模型 (Multiple Regression Model) 12
3.3.1 主成分迴歸 (Principal Component Regression, PCR) 12
3.3.1.1 主成分分析(Principle Component Analysis, PCA) 12
3.3.1.2 多元線性迴歸(Multiple Linear Regression, MLR) 12
3.4 多元分類模型 (Multi-class Classification Model) 13
3.4.1 Gaussian Naïve Bayes(GaNB) 13
3.4.2 Support Vector Machine 13
3.4.2.1 Linear-SVC 13
3.4.2.2 Support Vector Machine- SVC 14
3.4.3 Logistic Regression 14
3.4.4 Decision Tree 14
3.4.5 Random Forest 14
3.4.6 Neural Network 14
3.4.7 eXtreme Gradient Boosting (XGBoost) 15
3.5 評分策略 15
3.5.1 寬鬆評分(Grading on Leniency) 15
3.5.2 中等評分(Grading on Moderate) 15
3.5.3 嚴格評分(Grading on Stringency) 16
3.6 資源推薦策略 16
3.6.1 學生學習歷程的展示 16
3.6.2 學生學習成效的預測 16
3.6.3 學生推薦清單的內容 17
3.7 問卷 (Questionnaires) 18
3.8 K-means 18
四、 實驗設計 18
4.1 實驗一:預測 18
4.2 實驗二:推薦 19
4.2.1 案例一 19
4.2.2 案例二 19
五、 結果討論 19
5.1 RQ1 19
5.1.1 RQ1-1 20
5.1.2 RQ1-2 22
5.1.3 RQ1-3 24
5.2 RQ2 28
5.2.1 RQ2-1 28
5.2.2 RQ2-2 29
5.2.2.1 案例一 29
5.2.2.2 案例二 30
六、 結論 31
七、 研究限制 33
八、 未來研究 34
九、 參考文獻 34
參考文獻 Abraham Wald. New York: John Wiley and Sons, Inc. Sequentail Analysis., New York, 1947.
Asif, R., Merceron, A., & Pathan, M. K. (2014). Predicting student academic performance at degree level: a case study. International Journal of Intelligent Systems and Applications, 7(1), 49.
Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers & Education, 61, 133-145.
Hwang, G. J., & Chang, H. F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023-1031.
Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students′ learning performance in natural science courses. Computers & Education, 69, 121-130.
Lu, O. H., Huang, A. Y., Huang, J. C., LIN, A. J., HIROAKI OGATA, Yang, S. J. . (2017). Applying Learning Analytics for the Early Prediction of Students’ Academic Performance in Blended Learning. Educational Technology & Society.
Oladokun, V., Adebanjo, A., & Charles-Owaba, O. (2008). Predicting students’ academic performance using artificial neural network: A case study of an engineering course. The Pacific Journal of Science and Technology, 9(1), 72-79.
Owen H. T. Lu, Anna Y. Q. Huang, & Stephen. J.H. Yang. (2018). Benchmarking and Tuning Regression Algorithms on Predicting Students’ Academic Performance. 26th International Conference on Computers in Education. Philippines: Asia-Pacific Society for Computers in Education
Romero, C., López, M.-I., Luna, J.-M., & Ventura, S. (2013). Predicting students′ final performance from participation in on-line discussion forums. Computers & Education, 68, 458-472.
Yoo, J., & Kim, J. (2014). Can online discussion participation predict group project performance? investigating the roles of linguistic features and participation patterns. International Journal of Artificial Intelligence in Education, 24(1), 8-32.
指導教授 楊鎮華(Stephen J.H. Yang) 審核日期 2019-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明