博碩士論文 106522058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.217.140.32
姓名 何崇睿(Chung-Jui Ho)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 影像色彩與紋理特徵擷取硬體加速器
(Embedded Hardware Design of Color/Texture Feature Extractor)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 特徵擷取是影像分析和辨識中非常重要的一環,越來越多的應用需求朝向即時取得特徵,自組織對映神經網路以及局部二值型態雖然都具有很強的特徵描述能力,但是在軟體執行上的速度無法達到即時需求。因此本研究設計了一個影像色彩和紋理特徵擷取硬體加速器,使用硬體的平行化以及管線化優勢,以加速影像特徵擷取速度。此一硬體加速器具有彈性架構,可提供全域和區域特徵擷取兩個模式,針對SOM色彩特徵量化,我們也設計了2×2以及4×4輸出神經元,提供不同色彩量化硬體架構。實驗驗證對640×480的影像進行特徵擷取,我們的硬體加速器可以在100MHz的系統時脈條件下,相對於PC,可達到10.5倍的色彩特徵擷取速度提升;紋理特徵擷取也比PC快1.875倍的速度,展現了特徵擷取硬體加速器低功耗、體積小且高效率的優勢。
摘要(英) Feature extraction is crucial to image analysis and identification, and applications that need instantaneous feature extraction are increasing. Self-organizing map (SOM) neural networks and local binary patterns possess outstanding feature description capability. However, the computation speed of existent software cannot achieve instantaneous extraction using these two methods. Therefore, this study designed an image color and texture feature extraction hardware accelerator, using the parallelizability and pipelining of hardware to increase the speed of image feature extraction. The proposed accelerator features a flexible framework to enable global and regional feature extraction. To quantize the color features of an SOM, we also designed 2×2 and 4×4 output neurons for different color quantization hardware frameworks. Experiments were performed by extracting features from 640×480 images. Under a system clock rate of 100 MHz, the color feature extraction speed of the proposed accelerator was 10.5 times that of a conventional personal computer. The texture feature extraction speed of the accelerator was also 1.875 times that of the personal computer. The results demonstrated that the proposed hardware accelerator is advantageous for its low energy consumption, small volume, and high efficiency.
關鍵字(中) ★ 特徵擷取
★ 硬體加速
★ 自組織對映神經網路
★ 局部二值型態
★ 全域特徵
★ 區域特徵
關鍵字(英)
論文目次 摘要 V
Abstract VI
謝誌 VII
目錄 IX
圖目錄 XI
表目錄 XIII
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目標 3
1.3 論文架構 4
第二章、 技術回顧 5
2.1 LBP特徵 5
2.1.1 LBP特徵演算法 5
2.1.2 LBP特徵演算法硬體 8
2.2 SOM神經網路 9
2.2.1 SOM神經網路演算法 9
2.2.2 SOM神經網路硬體 12
2.3 嵌入式硬體設計方法論 13
2.3.1 階層式模組化設計 14
2.3.2 離散事件建模 16
2.3.3 硬體高階合成 19
第三章、 影像色彩與紋理特徵擷取硬體加速器設計 21
3.1 系統架構 21
3.2 特徵擷取離散事件建模 24
3.2.1 區域色彩特徵擷取建模 25
3.2.2 全域色彩特徵擷取建模 26
3.2.3 區域紋理特徵擷取建模 27
3.2.4 全域紋理特徵擷取建模 29
3.3 特徵擷取方法設計說明 29
3.3.1 SOM色彩特徵擷取方法 29
3.3.2 LBP紋理特徵擷取方法 30
3.3.3 全域和區域特徵擷取方法 31
3.4 特徵擷取管線控制器設計 32
3.4.1 色彩特徵擷取管線控制 33
3.4.2 紋理特徵擷取管線控制 33
第四章、 實驗結果 35
4.1 實驗軟硬體介紹 35
4.2 硬體合成與驗證 35
4.2.1 色彩特徵擷取合成模組 36
4.2.2 紋理特徵擷取合成模組 38
4.2.3 硬體合成資源 40
4.2.4 軟硬體結果評估 41
4.3 硬體加速驗證 43
第五章、 結論與未來展望 44
5.1 結論 44
5.2 未來展望 45
參考文獻 46
參考文獻 [1] P.-Y. Chen, C.-C. Huang, C.-Y. Lien, and Y.-H. Tsai, "An efficient hardware implementation of HOG feature extraction for human detection," IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 656-662, 2014.
[2] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
[3] J. Yum, C.-H. Lee, J.-S. Kim, and H.-J. Lee, "A novel hardware architecture with reduced internal memory for real-time extraction of SIFT in an HD video," IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 10, pp. 1943-1954, 2016.
[4] H. Cheng, N. Zheng, and J. Qin, "Pedestrian detection using sparse Gabor filter and support vector machine," IEEE Proceedings. Intelligent Vehicles Symposium, 2005., pp. 583-587, 2005.
[5] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, "Pedestrian detection using wavelet templates," cvpr, vol. 97, pp. 193-199, 1997.
[6] T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns," IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 7, pp. 971-987, 2002.
[7] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, "Local binary patterns and its application to facial image analysis: a survey," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 6, pp. 765-781, 2011.
[8] M. B. López, A. Nieto, J. Boutellier, J. Hannuksela, and O. Silvén, "Evaluation of real-time LBP computing in multiple architectures," Journal of Real-Time Image Processing, vol. 13, no. 2, pp. 375-396, 2017.
[9] M.-C. Hu, K. S. Ng, P.-Y. Chen, Y.-J. Hsiao, and C.-H. Li, "Local binary pattern circuit generator with adjustable parameters for feature extraction," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2582-2591, 2018.
[10] M. Kraft and M. Fularz, "A Hardware Architecture for Calculating LBP-Based Image Region Descriptors," Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015, pp. 671-679, 2016.
[11] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack, "Efficient color histogram indexing for quadratic form distance functions," IEEE transactions on pattern analysis and machine intelligence, vol. 17, no. 7, pp. 729-736, 1995.
[12] M. A. Stricker and M. Orengo, "Similarity of color images," Storage and Retrieval for Image and Video Databases III, vol. 2420, pp. 381-393, 1995.
[13] J. R. Smith and S.-F. Chang, "Tools and techniques for color image retrieval," Storage and Retrieval for Still Image and Video Databases IV, vol. 2670, pp. 426-438, 1996.
[14] A. Mojsilovic, H. Hu, and E. Soljanin, "Extraction of perceptually important colors and similarity measurement for image matching, retrieval and analysis," IEEE Transactions on Image Processing, vol. 11, no. 11, pp. 1238-1248, 2002.
[15] M. Ponti, T. S. Nazaré, and G. S. Thumé, "Image quantization as a dimensionality reduction procedure in color and texture feature extraction," Neurocomputing, vol. 173, pp. 385-396, 2016.
[16] K. Elektroingenieur and S. S. Haykin, Neural networks and learning machines. Pearson Upper Saddle River, 2009.
[17] J. Faigl and G. A. Hollinger, "Autonomous data collection using a self-organizing map," IEEE transactions on neural networks and learning systems, vol. 29, no. 5, pp. 1703-1715, 2018.
[18] M. A. d. A. de Sousa and E. Del-Moral-Hernandez, "Comparison of three FPGA architectures for embedded multidimensional categorization through Kohonen′s Self-organizing maps," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.
[19] C.-H. Chang, P. Xu, R. Xiao, and T. Srikanthan, "New adaptive color quantization method based on self-organizing maps," IEEE transactions on neural networks, vol. 16, no. 1, pp. 237-249, 2005.
[20] M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui, "A hardware configurable self-organizing map for real-time color quantization," 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 336-339, 2016.
[21] Z. Huang et al., "A hardware-efficient vector quantizer based on self-organizing map for high-speed image compression," Applied Sciences, vol. 7, no. 11, p. 1106, 2017.
[22] M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui, "A scalable and adaptable hardware NoC-based self organizing map," Microprocessors and Microsystems, vol. 57, pp. 1-14, 2018.
[23] O. Mujahid, Z. Ullah, H. Mahmood, and A. Hafeez, "Fast Pattern Recognition Through an LBP Driven CAM on FPGA," IEEE Access, vol. 6, pp. 39525-39531, 2018.
[24] J. Lachmair, T. Mieth, R. Griessl, J. Hagemeyer, and M. Porrmann, "From CPU to FPGA—Acceleration of self-organizing maps for data mining," 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4299-4308, 2017.
[25] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
[26] E. Aptoula and S. Lefèvre, "Morphological description of color images for content-based image retrieval," IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2505-2517, 2009.
[27] T. Ojala, M. Pietikainen, and D. Harwood, "Performance evaluation of texture measures with classification based on Kullback discrimination of distributions," Proceedings of 12th International Conference on Pattern Recognition, vol. 1, pp. 582-585, 1994.
[28] O. Lahdenoja, M. Laiho, and A. Paasio, "Reducing the feature vector length in local binary pattern based face recognition," IEEE International Conference on Image Processing 2005, vol. 2, pp. II-914, 2005.
[29] W. Ge, W. Quan, and C. Han, "Face description and identification using histogram sequence of local binary pattern," 2015 Seventh International Conference on Advanced Computational Intelligence (ICACI), pp. 415-420, 2015.
[30] N.-J. Wang, S.-C. Chang, and P.-J. Chou, "A real-time multi-face detection system implemented on FPGA," 2012 International Symposium on Intelligent Signal Processing and Communications Systems, pp. 333-337, 2012.
[31] J. Boutellier, I. Lundbom, J. Janhunen, J. Ylimäinen, and J. Hannuksela, "Application-specific instruction processor for extracting local binary patterns," Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing, pp. 1-8, 2012.
[32] J. Janhunen, P. Salmela, O. Silvén, and M. Juntti, "Fixed-versus floating-point implementation of MIMO-OFDM detector," 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3276-3279, 2011.
[33] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, "WARP: time warping for periodicity detection," Fifth IEEE International Conference on Data Mining (ICDM′05), p. 8 pp., 2005.
[34] L. Platon, F. Zehraoui, and F. Tahi, "Self-organizing maps with supervised layer," 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), pp. 1-8, 2017.
[35] H. Hikawa and Y. Maeda, "Improved learning performance of hardware self-organizing map using a novel neighborhood function," IEEE transactions on neural networks and learning systems, vol. 26, no. 11, pp. 2861-2873, 2015.
[36] D. C. Hendry, A. A. Duncan, and N. Lightowler, "IP core implementation of a self-organizing neural network," IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1085-1096, 2003.
[37] M. Melton, T. Phan, D. S. Reeves, and D. E. Van den Bout, "The TInMANN VLSI Chip," IEEE Transactions on neural networks, vol. 3, no. 3, pp. 375-384, 1992.
[38] T. Hämäläinen, J. Saarinen, and K. Kaski, "TUTNC: A general purpose parallel computer for neural network computations," Microprocessors and Microsystems, vol. 19, no. 8, pp. 447-465, 1995.
[39] L. Vojáček, "Neural Networks in High Performance Computing Environment," 2015.
[40] P. Kolinummi, P. Hämäläinen, T. Hämäläinen, and J. Saarinen, "PARNEU: general-purpose partial tree computer," Microprocessors and microsystems, vol. 24, no. 1, pp. 23-42, 2000.
[41] Y. Bai, S. Z. Ahmed, and B. Granado, "ARC 2014: Towards a Fast FPGA Implementation of a Heap-Based Priority Queue for Image Coding Using a Parallel Index-Aware Tree," ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 9, no. 1, p. 8, 2015.
[42] R. J. Mayer, "IDEF0 function modeling," A Reconstruction of the Original Air Force Wright Aeronautical Laboratory Technical Report, AFWAL-TR-81-4023 (The IDEF0 Yellow Book), Knowledge-Based System Inc, College Station, TX, 1992.
指導教授 陳慶瀚 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明