博碩士論文 106522097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.119.126.168
姓名 黃上銘(Shang-Ming Huang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在資料中心的小流量加速及大流量降速負載平衡策略
(Fast Mice And Slow Elephant Load Balancing Strategy For Datacenter Network)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ SeFence: 基於安全感測的可信任周邊存取控制
★ 高解析度二維地理影像的三維建模:旋轉變換投影與傳統方法的比較研究★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現在的資料中心有相當大比例的流量是小流量的資料傳遞。在
許多資料中心當中大流量和小流量的資料傳遞有著相同的權重,但即
使小流量完成資料傳輸的時間較短,相同的權重仍會讓小流量的資料
傳輸花費較多時間來傳遞單一封包,也因此相同權重的負載平衡的策
略會不公平的對待小流量的資料傳遞。在我們的方法當中透過觀察
Flowlet 大小的特性代表著傳輸路線的壅塞情形及流量大小,來鎖定部
分大流量的資料傳遞,並且透過負載平衡策略的改變,將占用不壅塞
路徑的大流量的資料傳遞改由較為壅塞的路徑傳輸,保留更多的資源
給小流量的資料傳遞,同時部過度剝削大流量資掉傳遞的資源,來改
善大流量和小流量資料傳遞之間的不公平,並且進一步的提升小流量
資料傳遞的效能
摘要(英) In modern datacenter network, mice flows are big part in overall traffic. Most load balancing algorithm give the same priority to mice flow and elephant flow while making load balance decision. Even mice flow have small
flow completion time. Such equal priority strategy let mice flow take more time to transmit a single packet than elephant flow. In this paper, we propose a fast mice and slow elephant load balancing algorithm which can first
locate elephant flow overuse uncongested route by factors affect flowlet size and elephant flows are abusing uncongested path are routed to congested path
to improve the imbalance between mice flow and elephant flow and further increase the throughput of mice flow.
關鍵字(中) ★ 資料中心
★ 資料中心負載平衡
關鍵字(英) ★ datacenter
★ datacenter load balancing
論文目次 Contents
中文摘要 i
Abstract ii
Contents iii
List of Figures v
1 Introduction 1
2 Related Work and Preliminary 3
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Splitting Granularity . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Mice Flow and Elephant Flow Load Balancing . . . . . . . . . . 5
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Design 9
3.1 FMSE Load Balance Strategy . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Flowlet Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Elephant Flow Identification . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 k-th Congested Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 k-th congested route vs. Disconnect Avoidance . . . . . . . . . . . . . . 13
4 Simulation 14
4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Number of Flowlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Flow Completion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Average Flow Completion Time . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Fairness Between Mice Flow And Elephant Flow . . . . . . . . . . . . . 22
4.7 Packet Loss Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Discussion 25
5.1 CONGA Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.1 Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Congestion Table . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Route Congestion Level . . . . . . . . . . . . . . . . . . . . . . 27
Conclusion 29
Bibliography 30
參考文獻 [1] Z. Han and L. Yu, “A survey of of the bcube data center network topology,” 2018
IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing,
(HPSC) and IEEE International Conference on Intelligent Data and Security (IDS),
2018.
[2] J. Srinivas and B. Eswara Reddy, “Exploiting geo distributed datacenters of a
cloud for load balancing,” 2015 IEEE International Advance Computing Conference
(IACC), 2015.
[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, et al., “Conga: Distributed congestionaware load balancing for datacenters,” ACM SIGCOMM Computer Communication
Review, vol. 44, no. 4, pp. 503–514, 2014.
[4] C. Hopps, “Analysis of an equal-cost path alogrithm,” RFC2992, IETF, 2000.
[5] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balancing without
packet reordering,” ACM SIGCOMM Computer Communication Review, vol. 37,
no. 2, pp. 51–62, 2007.
[6] P. Hurtig and A. Brunstrom, “Packet reordering in tcp,” IEEE GLOBECOM Worksops, 2011.
[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks,” Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, vol. 10, pp. 19–19,
2010.
[8] K. He, E. Rozner, K. Agarwal, et al., “Presto: Edge-based load balancing for fast
datacenter networks,” SIGCOMM ’15 Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, 2015.
[9] T. Benson, A. Anand, A. Akella, et al., “Microte: Fine grained traffic engineering
for data centers,” CoNEXT ’11 Proceedings of the Seventh Conference on emerging
Networking Experiments and Technologies, 2011.
[10] H. Xu and B. Li, “Repflow: Minimizing flow completion times with replicated flows
in data centers,” IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 1581–1589, 2014.
[11] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “Detail: reducing the flow
completion time tail in datacenter networks,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 139–150, 2012.
[12] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y. Xiong, and
D. Maltz, “Per-packet load-balanced, low-latency routing for clos-based data center networks,” Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, pp. 49–60, 2013.
[13] S. Qiu, X. Yu, K. Wang, et al., “Miflo: A scheduling algorithm based on mice flows
optimization in hybrid data center network,” 2017 16th International Conference on
Optical Communications and Networks (ICOCN), 2017.
[14] W. Wang, Y. Sun, K. Salamatian, et al., “Adaptive path isolation for elephant and
mice flows by exploiting path diversity in datacenters,” IEEE Transactions on Network and Service Management, 2016.
[15] H. Xu and B. Li, “Tinyflow: Breaking elephants down into mice in data center networks,” 2014 IEEE 20th International Workshop on Local Metropolitan Area Networks (LANMAN), 2014.
[16] R. Trestian, G.-M. Muntean, and K. Katrinis, “Micetrap: Scalable traffic engineering
of datacenter mice flows using openflow,” 2013 IFIP/IEEE International Symposium
on Integrated Network Management (IM 2013), 2013.
[17] D. Carra, “Controlling the delay of small flows in datacenters,” 2014 IEEE 34th
International Conference on Distributed Computing Systems Workshops (ICDCSW),
2014.
[18] C. Wang, G. Zhang, H. Chen, et al., “An aco-based elephant and mice flow scheduling system in sdn,” 2017 IEEE 2nd International Conference on Big Data Analysis
(ICBDA), 2017.
[19] D. F. Pellegrini, L. Maggi, A. Massaro, et al., “Blind, adaptive and robust flow segmentation in datacenters,” IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018.
[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM conference on Data communication, 2008.
[21] K. Kumar and B. Annappa, “Load balancing strategy for optimal peak hour performance in cloud datacenters,” IEEE International Conference on Signal Processing,
Informatics, Communication and Energy Systems (SPICES), 2015.
[22] Z. Guo, X. Dong, S. Chen, et al., “How to set timeout: Achieving adaptive load balance in asymmetric topology based on flowlet switching,” IEEE 37th International
Performance Computing and Communications Conference (IPCCC), 2018.
[23] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers in the wild,” IMC ’10 Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, 2010.
[24] S. Kandula, S. Sengupta, A. Greenberg, et al., “The nature of data center traffic measurements & analysis,” IMC ’09 Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement, 2009.
[25] N. Dukkipati and N. McKeown, “Why flow-completion time is the right metric for
congestion control,” ACM SIGCOMM Computer Communication Review, vol. 36,
no. 1, pp. 59–62, 2006.
指導教授 張貴雲 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明