參考文獻 |
1.田永銘、鄭華恩、曾禹昕、盧育辰、許哲睿,「以合成岩體模式決定表徵單元體尺寸」,科技部專題研究計畫期末報告,MOST 106-2221-E-008-034 (2018)。
2.田永銘、盧育辰、許哲睿、鄭華恩、法麗佳,「裂隙岩體幾何與力學表徵單元體積及其力學性質」,科技部專題研究計畫期末報告,MOST 105-2221-E-008-026 (2017)。
3.田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
4.吳宛庭,「三維裂隙網路升尺度方法推估等校參數之差異評估」,碩士論文,國立中央大學,桃園 (2016)。
5.吳得聖,「非均質正交性介質波傳問題之研究」,碩士論文,國立聯合大學,苗栗 (2012)。
6.許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文,國立中央大學,桃園 (2017)。
7.曾禹昕,「裂隙岩體水力傳導係數之不確定性」,碩士論文,國立中央大學,桃園 (2019)。
8.程泓皓,「以PFC2D模擬併構岩單壓強度及變形性」,碩士論文,國立中央大學,桃園 (2014)。
9.劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學,桃園 (2013)。
10.劉明坤,「離散裂隙網路數值模擬:以花蓮溪畔坑道花崗片麻岩體為例」,碩士論文,國立中正大學,嘉義 (2014)。
11.鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學,桃園 (2019)。
12.鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南市,2018年7月。
13.Amadei, B., “Importance of Anisotropy When Estimating and Measuring In Situ Stresses in Rock,” Int J Rock Mech Min Sci & Geomech Abstr, Vol.33, No. 3, pp.293-325 (1996)
14.Amadei, B., and Pan, E., “Gravitational Stresses in Anisotropic Rock Masses with Inclined Strata,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 9, No. 3, pp.225-236 (1992)
15.Amadei, B., Savage, W.Z., and Swolfs, H.S., “Gravitational stress in anisotropic rock masses,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 24, pp.5-14 (1987)
16.Annandale, G.W., “Erodibility,” Journal of Hydraulic Research, Vol.33, pp.471-494 (1995)
17.Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989)
18.Brady, B.H.G, and Brown, E.T., “Rock Mechanics for Underground Mining,” Allen & Unwin (1985)
19.Cundall, P.A., Pierce, M.E., and Ivars, D.M., “Quantifying the Size Effect of Rock Mass Strength,” In: Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics (ACG), Vol. 2, pp. 3-15, (2008).
20.Deere, D.U., and Miller, R.P., Engineering classification and index properties for intact rock, University of Illinois, American (1966)
21.Dershowitz, W.S., “Rock joint systems,” Ph.D. Dissertation, Massachusetts Institute of Technology (1984).
22.Dershowitz, W.S., and Einstein, H.H., “Characterizing rock joint geometry with joint system models,” Journal of Rock Mechanics and Rock Engineering, Vol. 21, pp. 21–51 (1988).
23.Dershowitz, W.S., and Schrauf T.S., Discrete Fracture Flow Modeling With The Jinx Package, American Rock Mechanics Association, American (1987).
24.Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
25.Gercek, H., “Poisson’s ratio values for rocks,” Int J Rock Mech Min Sci, Vol. 44, pp. 1-13 (2007).
26.Grenon, M., and Hadjigeorgiou, J., “Fracture-SG, A fracture system generator software package,” Version 2.17(2008).
27.Hoek, E., and Brown E.T., “Practical Estimates of Rock Mass Strength,” Int J Rock Mech Min Sci, Vol. 34, No. 8, pp. 171-180 (1997).
28.Huang, D., Wang, J., and Liu, Su., “A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses,” Granular Matter, Vol. 17(6), pp. 775-791 (2015).
29.Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions), Version 5.0, MN 55401 (2013).
30.Ivars, D.M., Pierce, M.E., and Darcel, C., “Anisotropy and scale dependency in jointed rock-mass strength – A Synthetic Rock Mass Study,” In: Proceedings of the 1st International FLAC/DEM Aymposium on Numerical Modeling, pp. 231-239 (2008).
31.Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
32.Khanlari, G., Rafiei B. and Abdilor Y. (2014), “Evaluation of strength anisotropy and failure modes of laminated sandstones,” Arabian Journal of Geosciences, Vol. 8, pp. 3089-3102.
33.Lu, Y.C., (2018) “Uncertainties of geometrical and mechanical properties of heterogeneous media and discontinuous rock masses,” PhD dissertation, Dept. of Civil Engineering, National Central University, Taoyuan, Taiwan.
34.Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
35.Pine R.J., Coggan J.S., Flynn Z.N., Elmo D., “The Development of a new Numerical Modelling Approach for Naturally Fractured Rock Masses,” Rock Mech. Rock Engng., Vol.39(5), pp.395-419. (2006)
36.Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
37.Poulsen, B.A., Adhikary, M.K., Elmouttie, M.K., and Wilkins, A., “Convergence of synthetic rock mass modelling and Hoek-Brown strength criterion,” Int J Rock Mech Min Sci, Vol. 80, pp. 171-180 (2015).
38.Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
39.Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412 (2001).
40.Wang, T., Xu, D., and Elsworth, D., “Distinct element modeling of strength variation in jointed rock masses under uniaxial compression,” Geomech Geophys Geo-, Vol. 2, pp. 11-24 (2016)
41.Wittke, W., Rock Mechanics, Springer-Verlag Berlin Heidelberg, German, pp.61-63 (1990)
42.Wu, Q., Kulatilake, P.H.S.W., “REV and its properties on fracture system and mechanical properties, and an orthotropic constitutive model for a jointed rock mass in a dam site in China,” Computers Geotechnics, Vol.43, pp.124–142. (2012) |