參考文獻 |
[1] Renée Salmonsen, “Taiwan named 7th on Global Climate Risk Index...” [Online]. Available: https://www.taiwannews.com.tw/en/news/3296265. [Accessed: 26-Oct-2019].
[2] IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[3] J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review,” Reviews of Geophysics, vol. 38, no. 4, pp. 513–543, 2000.
[4] T. C. Bond et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 11, pp. 5380–5552, Jun. 2013.
[5] E. Andrews and S. M. Larson, “Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity,” Environmental Science & Technology, vol. 27, no. 5, pp. 857–865, May 1993.
[6] P. Bouguer, Essai d’optique sur la gradation de la lumière. chez Claude Jombert, ruë S. Jacques, au coin de la ruë des Mathurins, à l’Image Notre-Dame, 1729.
[7] J. H. Lambert, Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett, 1760.
[8] A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem, vol. 86, pp. 78–88, 1852.
[9] “SORCE » Total Solar Irradiance Data.” [Online]. Available: http://lasp.colorado.edu/home/sorce/data/tsi-data/. [Accessed: 28-Oct-2019].
[10] A. A. Kochanovskij, Ed., Satellite aerosol remote sensing over land. Berlin: Springer [u.a.], 2009.
[11] B. N. Holben et al., “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sensing of Environment, vol. 66, no. 1, pp. 1–16, Oct. 1998.
[12] T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 35, no. 1, pp. 13–21, Jan. 1986.
[13] Y. J. Kaufman et al., “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” Journal of Geophysical Research: Atmospheres, vol. 99, no. D5, pp. 10341–10356, 1994.
[14] O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D16, pp. 20673–20696, Aug. 2000.
[15] Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 1286–1298, Sep. 1997.
[16] D. Tanré, Y. J. Kaufman, M. Herman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D14, pp. 16971–16988, 1997.
[17] R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance,” Journal of Geophysical Research: Atmospheres, vol. 112, no. D13, 2007.
[18] A. M. Sayer, L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, “MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and ‘merged’ data sets, and usage recommendations,” Journal of Geophysical Research: Atmospheres, vol. 119, no. 24, pp. 13,965-13,989, 2014.
[19] N. C. Hsu, S.-C. Tsay, M. D. King, and J. R. Herman, “Aerosol Properties Over Bright-Reflecting Source Regions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 557–569, Mar. 2004.
[20] N. C. Hsu, S.- Tsay, M. D. King, and J. R. Herman, “Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3180–3195, Nov. 2006.
[21] J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380 nm from TOMS data,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D23, pp. 28003–28011, 1997.
[22] R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations,” Journal of Geophysical Research: Atmospheres, vol. 108, no. D2, 2003.
[23] T.-H. Lin, P. Yang, and B. Yi, “Effect of black carbon on dust property retrievals from satellite observations,” JARS, vol. 7, no. 1, p. 073568, May 2013.
[24] G. W. Petty, A first course in atmospheric radiation. Sundog Publishing, 2006.
[25] J. R. Meyer-Arendt, Introduction to Classical and Modern Optics. Prentice Hall, 1995.
[26] Y. Iwasaka et al., “Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport,” Air Qual Atmos Health, vol. 2, no. 1, pp. 29–38, Mar. 2009.
[27] J. Sun, M. Zhang, and T. Liu, “Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate,” Journal of Geophysical Research: Atmospheres, vol. 106, no. D10, pp. 10325–10333, 2001.
[28] X. Jiang, Y. Liu, B. Yu, and M. Jiang, “Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area,” Remote Sensing of Environment, vol. 107, no. 1, pp. 45–53, Mar. 2007.
[29] B. Li, H. Yuan, N. Feng, and S. Tao, “Comparing MODIS and AERONET aerosol optical depth over China,” International Journal of Remote Sensing, vol. 30, no. 24, pp. 6519–6529, Nov. 2009.
[30] Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” Journal of Aerosol Science, vol. 41, no. 5, pp. 501–512, May 2010.
[31] H. Li, C. Liu, L. Bi, P. Yang, and G. W. Kattawar, “Numerical accuracy of ‘equivalent’ spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 14, pp. 2127–2132, Sep. 2010.
[32] Y. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 70, no. 4, pp. 395–419, Aug. 2001.
[33] J. F. de Haan, P. B. Bosma, and J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astronomy and Astrophysics, vol. 183, pp. 371–391, Sep. 1987.
[34] C. Levoni, M. Cervino, R. Guzzi, and F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt., AO, vol. 36, no. 30, pp. 8031–8041, Oct. 1997.
[35] K.-E. Chang et al., “Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data,” Environmental Research Letters, vol. 11, no. 8, p. 085002, Aug. 2016.
[36] D. M. Giles et al., “An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D17, 2012.
[37] H. El‐Askary and M. Kafatos, “Dust storm and black cloud influence on aerosol optical properties over Cairo and the Greater Delta region, Egypt,” International Journal of Remote Sensing, vol. 29, no. 24, pp. 7199–7211, Dec. 2008.
[38] M. El‐Metwally, S. C. Alfaro, M. A. Wahab, and B. Chatenet, “Aerosol characteristics over urban Cairo: Seasonal variations as retrieved from Sun photometer measurements,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D14, 2008.
[39] “Relative Humidity in Cairo, Egypt.” [Online]. Available: http://www.cairo.climatemps.com/humidity.php. [Accessed: 29-Oct-2019].
[40] O. Muñoz and H. Volten, “Experimental light scattering matrices from the Amsterdam Light Scattering Database,” in Light Scattering Reviews: Single and Multiple Light Scattering, A. A. Kokhanovsky, Ed. Berlin, Heidelberg: Springer, 2006, pp. 3–29.
[41] O. Muñoz, F. Moreno, D. Guirado, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam–Granada Light Scattering Database,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 7, pp. 565–574, May 2012.
[42] “Cimel Electronique - Explore the climate.” [Online]. Available: https://www.cimel.fr/. [Accessed: 29-Oct-2019].
[43] 張國恩, “MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討,” 碩士論文, 國立中央大學太空科學研究所, 國立中央大學, 2010.
[44] 張淵翔, “地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析,” 碩士論文, 國立中央大學遙測科技碩士學位學程, 國立中央大學, 2017.
[45] 孫達旻, “同時輻射率定法在向日葵八號氣膠光學厚度反演之應用,” 碩士論文, 國立中央大學遙測科技碩士學位學程, 國立中央大學, 2018.
[46] “気象庁 Japan Meteorological Agency.” [Online]. Available: https://www.jma.go.jp/jma/index.html. [Accessed: 29-Oct-2019].
[47] J. Y. Yin and L. H. Liu, “Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 14, pp. 2115–2126, Sep. 2010.
[48] C. Liu, R. L. Panetta, and P. Yang, “The Influence of Water Coating on the Optical Scattering Properties of Fractal Soot Aggregates,” Aerosol Science and Technology, vol. 46, no. 1, pp. 31–43, Jan. 2012.
[49] W. Li and L. Shao, “Transmission electron microscopy study of aerosol particles from the brown hazes in northern China,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D9, 2009.
[50] W. J. Li, L. Y. Shao, and P. R. Buseck, “Haze types in Beijing and the influence of agricultural biomass burning,” Atmospheric Chemistry and Physics, vol. 10, no. 17, pp. 8119–8130, Sep. 2010.
[51] W. J. Li, D. Z. Zhang, L. Y. Shao, S. Z. Zhou, and W. X. Wang, “Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain,” Atmospheric Chemistry and Physics, vol. 11, no. 22, pp. 11733–11744, Nov. 2011.
[52] E. Swietlicki et al., “Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2,” Tellus B, vol. 52, no. 2, pp. 201–227, 2000.
[53] E. Weingartner, M. Gysel, and U. Baltensperger, “Hygroscopicity of Aerosol Particles at Low Temperatures. 1. New Low-Temperature H-TDMA Instrument: Setup and First Applications,” Environ. Sci. Technol., vol. 36, no. 1, pp. 55–62, Jan. 2002.
[54] S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. A: Math. Gen., vol. 12, no. 5, pp. L109–L117, May 1979.
[55] A. V. Filippov, M. Zurita, and D. E. Rosner, “Fractal-like Aggregates: Relation between Morphology and Physical Properties,” Journal of Colloid and Interface Science, vol. 229, no. 1, pp. 261–273, Sep. 2000.
[56] C. M. Sorensen and G. C. Roberts, “The Prefactor of Fractal Aggregates,” Journal of Colloid and Interface Science, vol. 186, no. 2, pp. 447–452, Feb. 1997.
[57] M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A, JOSAA, vol. 8, no. 6, pp. 871–882, Jun. 1991.
[58] N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt., AO, vol. 31, no. 25, pp. 5359–5365, Sep. 1992.
[59] Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt., AO, vol. 34, no. 21, pp. 4573–4588, Jul. 1995.
[60] Y. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Opt., AO, vol. 36, no. 36, pp. 9496–9508, Dec. 1997.
[61] M. Fan et al., “Scattering properties of soot-containing particles and their impact by humidity in 1.6μm,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 134, pp. 91–103, Feb. 2014.
[62] G. A. D’Almeida, E. P. Shettle, and P. Koepke, Atmospheric aerosols: global climatology and radiative characteristics. Hampton, Va., USA: A. Deepak Pub, 1991.
[63] M. Gysel et al., “Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions,” Geophysical Research Letters, vol. 30, no. 11, 2003.
[64] A. F. Khalizov, R. Zhang, D. Zhang, H. Xue, J. Pagels, and P. H. McMurry, “Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor,” Journal of Geophysical Research, vol. 114, no. D5, Mar. 2009.
[65]E. F. Mikhailov and S. S. Vlasenko, “Structure and optical properties of soot aerosol in a moist atmosphere: 1. Structural changes of soot particles in the process of condensation,” Izv. Atmos. Ocean. Phys., vol. 43, no. 2, pp. 181–194, Apr. 2007, doi: 10.1134/S0001433807020053.
[66]E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot–water drop agglomerates: An experimental study,” Journal of Geophysical Research: Atmospheres, vol. 111, no. D7, 2006, doi: 10.1029/2005JD006389.
[67]E. Weingartner, H. Burtscher, and U. Baltensperger, “Hygroscopic properties of carbon and diesel soot particles,” Atmospheric Environment, vol. 31, no. 15, pp. 2311–2327, Aug. 1997, doi: 10.1016/S1352-2310(97)00023-X.
[68] R. A. Dobbins, R. A. Fletcher, and H.-C. Chang, “The evolution of soot precursor particles in a diffusion flame,” Combustion and Flame, vol. 115, no. 3, pp. 285–298, Nov. 1998.
[69] L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” Journal of Geophysical Research: Atmospheres, vol. 110, no. D11, 2005.
[70] L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 106, no. 1, pp. 262–273, Jul. 2007.
[71] Ü. Ö. Köylü and G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combustion and Flame, vol. 89, no. 2, pp. 140–156, May 1992.
[72] M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteor. Soc., vol. 79, no. 5, pp. 831–844, May 1998.
[73] T. A. Witten and L. M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,” Phys. Rev. Lett., vol. 47, no. 19, pp. 1400–1403, Nov. 1981.
[74] P. Meakin, “Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation,” Phys. Rev. Lett., vol. 51, no. 13, pp. 1119–1122, Sep. 1983.
[75] E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, and J.- Morcette, “Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, May 1997.
[76] S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and J. Frank J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance,” Appl. Opt., AO, vol. 45, no. 26, pp. 6762–6774, Sep. 2006.
[77] S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces,” Appl. Opt., AO, vol. 46, no. 20, pp. 4455–4464, Jul. 2007.
[78] Y. Liu and M. Shao, “Estimation and prediction of black carbon emissions in Beijing City,” CHINESE SCI BULL, vol. 52, no. 9, pp. 1274–1281, May 2007.
[79]S. D. Forestieri et al., “Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot,” Atmospheric Chemistry and Physics, vol. 18, no. 16, pp. 12141–12159, Aug. 2018.
[80]M. Schnaiter, M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke, “Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion,” Atmospheric Chemistry and Physics, vol. 6, no. 10, pp. 2981–2990, Jul. 2006.
[81]M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1421–1444, Oct. 2003.
[82]G. Saliba et al., “Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling,” Aerosol Science and Technology, vol. 50, no. 11, pp. 1264–1276, Nov. 2016.
[83] “6SV - Home.” [Online]. Available: http://6s.ltdri.org/. [Accessed: 28-Oct-2019].
|