博碩士論文 101683007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.17.81.40
姓名 張國恩(Kuo-En Chang)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 煤煙在衛星氣膠參數反演影響之分析與改進
(Analysis and Improvement of Soot Effects on Satellite Retrievals of Aerosol Properties)
相關論文
★ 應用經驗模態分解法在福衛五號遙測照像儀之相對輻射校正★ 福爾摩沙衛星五號遙測儀之在軌絕對輻射校正
★ 應用衛星資料及地理資訊系統在印尼BALURAN國家公園野生牛棲息地之測繪★ 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
★ MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討★ 結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用
★ 衛星資料在臺灣地區西南氣流降雨估算之應用★ MODIS衛星資料在亞洲地區氣膠種類辨識之應用
★ 結合MODIS與MISR觀測資料在氣膠單次散射反照率反演之應用★ 應用衛星資料探討大台北地區都市熱島效應之時空分布
★ AERONET觀測資料在氣膠種類輻射參數之探討★ 結合衛星資料與建物資訊解析台北市空間發展與都市熱島效應之鏈結
★ 季風輻合效應在台灣地區熱帶氣旋降雨影響之探討★ 衛星資料探討台南都市發展在熱島效應及區域降雨型態之影響
★ 福爾摩沙衛星二號遙測照相儀之在軌相互輻射校正★ Landsat-7衛 星 資 料 反 演 都 市 大 氣 氣膠光學厚度之研究與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠是估算地球輻射驅動力最大的不確定性來源,具有極端吸收能力的煤煙與其他物質混合後,顯著的輻射特性改變是可能的重要因素,在全球暖化效應的評估有顯著的影響。本文提出了三個面相的研究,可以了解煤煙在衛星遙測反演氣膠參數的影響與重要性。首先,是接續Lin等人 (2013) 探討沙塵與煤煙混合效應的研究。Lin考慮到不同沙塵特性、煤煙混合權重已計算得到包括衛星顯反射率、氣膠光學厚度 (aerosol optical depth, AOD)、混合權重與單次散射反照率 (single scattering albedo, SSA) 等變量的資料庫。本文藉由AERONET (aerosol robotic network) 長期的觀測資料決定沙塵特性以建立查找表應用於衛星資料的反演。透過個案分析顯示,在考慮沙塵-煤煙混合後輻射參數之變化後,AOD的反演誤差可從30%的低估改進為6%左右,且合理地提供煤煙混合權重與氣膠參數的空間分布。另外一方面,目前大部分的衛星反演法都有一個很基本的限制在於需要事先得知或是假設氣膠的種類以便後續的反演。這之中,煤煙成分很少被提出來考慮。因此,我們考慮到煤煙成分的重要性提出了一個新的衛星反演法—同時輻射率定法,以反演AOD與SSA。其概念為假設某適當大小視窗內的大氣條件相同,回歸分析輻射傳送方程以求解大氣的總穿透率與反射率。同時,以強吸收 (含煤煙) 與強散射的氣膠種類解析AOD在總穿透率的可能範圍,配合真實情況的大氣反射率反演AOD與SSA。目前,此法應用於地球同步衛星向日葵8號衛星上確實能偵測出台灣主要的汙染熱區。與AERONET觀測比較,其AOD反演誤差多在20%以內,顯示同時輻射率定法在氣膠參數反演之準確性及可行性。最後,在大多數情況下,大氣中的氣膠容易與水氣交互作用造成吸濕性的粒徑生長會造成散射能力的改變。因此,對於衛星反演,相對濕度 (relative humidity, RH) 是另外一個必須考慮的因子。為探究相對濕度對於煤煙光學特性的影響,本文在第三個部分根據Fan等人 (2014) 所歸納的煤煙吸濕生長因子,使用團簇‐團簇聚集模型 (cluster-cluster aggregation, CCA) 與廣義多顆粒米氏解 (generalized multi-sphere Mie-solution, GMM) 建構煤煙聚集物的樣本並分別計算煤煙在各個相對濕度下的輻射參數,再利用大氣層頂反射率的模擬評估煤煙的吸濕效應。透過相對濕度資料與中解析度影像頻譜輻射儀 (moderate resolution imaging spectroradiometer, MODIS) AOD產品的比較:霧霾事件在RH<65%、RH=65%~75%和RH>75%三種情況下平均的反演誤差分別為+42.42%、-1.80%和-33.15%。整體研究成果在氣膠輻射參數之反演具有顯著之成效,尤其是克服氣膠混合效應之影響,對於衛星監測大氣氣膠之應用有相當的貢獻。
摘要(英) Atmospheric aerosols are the largest source of uncertainty in estimating the radiative forcing of the earth. When mixed with other substances, soot, a substance with extreme absorption capacity, can significantly change the radiation characteristics of aerosols, therefore imposes a significant impact on assessment of global warming effects. This study presented three aspects of research, which enabled understanding of the influence and importance of soot in retrieving aerosol parameters of satellite remote sensing. First, following the research conducted by Lin et al. (2013), where the mixing effect of dust and soot were investigated, and databases of variables such as satellite apparent reflectance, aerosol optical depth (AOD), mixing weights and single scattering albedo (SSA) were obtained through the consideration of different dust characteristics and soot mixing weights. This study determined dust characteristics using the long-term observation data of AERONET (aerosol robotic network) to create a table that can be used to retrieve satellite data. Case analysis showed that by taking into account the change of radiation parameters after dust was mixed with soot, the AOD retrieval error could be improved from underestimated 30% to about 6%, also, a reasonable space distribution of soot mixing weights and aerosol parameters could be obtained. On the other hand, currently, most satellite retrieval methods have a very basic limitation that the type of aerosol is required to be known or assumed in advance to facilitate the subsequent retrieval, with soot composition rarely proposed for consideration. Therefore, considering the importance of soot composition, we proposed a new satellite retrieval method—simultaneous radiation solution—to retrieve AOD and SSA. The concept was built on the assumption that the atmospheric conditions in a properly sized window were the same, with regression analysis of the radiative transfer equation performed to solve the total transmittance and reflectance of the atmosphere. At the same time, the possible range of AOD under certain total transmittance value was analyzed using aerosols with strong absorption (soot-containing) and aerosols with strong scattering to retrieve AOD and SSA based on the real atmosphere reflectance. At present, applying this method to the Himawari-8 geostationary satellite can indeed detect the main pollution hotspots in Taiwan. Compared with the AERONET observation, the AOD retrieval error is mostly within 20%, indicating the accuracy and feasibility of using the simultaneous radiation solution in aerosol parameter retrieval. Finally, in most cases, the aerosols in the atmosphere were likely to interact with water vapor, causing the growth of hygroscopic particle size, which changed the scattering ability. Therefore, for satellite retrieval, relative humidity (RH) is another factor that should be considered. Based on soot hygroscopic growth factors summarized by Fan et al. (2014), in the third part of this study, a cluster-cluster aggregation (CCA) model and the generalized multi-sphere Mie-solution (GMM) were used to construct samples of soot aggregates, with the radiation parameters of soot at each relative humidity calculated to explore the influence of relative humidity on soot optical properties. Then the simulation of the top-of-atmosphere reflectance was employed to evaluate the hygroscopic effect of soot. Through the comparison of relative humidity data and moderate resolution imaging spectroradiometer (MODIS) AOD product, it can be seen that: the average retrieval error in haze determination for RH<65%, RH=65-75% and RH>75% was +42.42%, -1.80% and -33.15%, respectively. The overall research results achieved significant effects in the retrieval of aerosol parameters, especially in the influence of overcoming aerosol mixing effects, making considerable contributions to the application of satellite monitoring of atmospheric aerosols.
關鍵字(中) ★ 氣膠
★ 煤煙
★ 衛星遙測
★ 沙塵
★ 混合效應
★ 氣膠光學厚度
★ 同時輻射率定法
★ 向日葵8號
★ 吸濕生長
★ 相對濕度
關鍵字(英) ★ aerosol
★ soot
★ satellite remote sensing
★ dust
★ mixing effect
★ aerosol optical depth
★ simultaneous radiation solution
★ Himawari-8
★ hygroscopic growth
★ relative humidity
論文目次 中文摘要 I
Abstract III
致謝 VI
目錄 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1-1 術語定義 3
1-2 研究背景 6
1-3 研究目的 12
第二章 用MODIS與AERONET資料決定沙塵-煤煙氣膠之混合權重以反演受汙染沙塵之光學特性 17
2-1 前言 17
2-2 研究方法 19
2-2-1 煤煙/沙塵資料庫 21
2-2-2 AERONET 21
2-2-3 MODIS 22
2-3 結果與討論 23
2-3-1 研究個案 23
2-3-2 反演結果的空間分布 25
第三章 同時輻射率定法利用向日葵8號衛星資料反演氣膠光學參數 34
3-1 前言 34
3-2 研究方法 36
3-2-1 向日葵8號 39
3-2-2 MOD09產品 40
3-2-3 CLAVR-x 40
3-3 結果與討論 41
3-3-1 MODIS地表反射率產品 41
3-3-2 MODIS資料的可行性分析 42
3-3-3 H‐8資料在SRS的個案應用 43
第四章 調查相對濕度對煤煙光學特性及東亞霾害事件氣膠光學厚度反演之影響 62
4-1 前言 62
4-2 研究方法 63
4-2-1 團簇-團簇聚集模型 67
4-2-2 廣義多顆粒米氏解 67
4-2-3 輻射傳送模式—6S 68
4-2-4 研究資料與站點 69
4-3 結果與討論 69
4-3-1 碎形煤煙的生長模型 69
4-3-2 煤煙聚集物的光學特性 70
4-3-3 衛星顯反射率的模擬 72
4-3-4 研究個案 74
第五章 結論與展望 87
參考文獻 89
參考文獻 [1] Renée Salmonsen, “Taiwan named 7th on Global Climate Risk Index...” [Online]. Available: https://www.taiwannews.com.tw/en/news/3296265. [Accessed: 26-Oct-2019].
[2] IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013.
[3] J. Haywood and O. Boucher, “Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review,” Reviews of Geophysics, vol. 38, no. 4, pp. 513–543, 2000.
[4] T. C. Bond et al., “Bounding the role of black carbon in the climate system: A scientific assessment,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 11, pp. 5380–5552, Jun. 2013.
[5] E. Andrews and S. M. Larson, “Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity,” Environmental Science & Technology, vol. 27, no. 5, pp. 857–865, May 1993.
[6] P. Bouguer, Essai d’optique sur la gradation de la lumière. chez Claude Jombert, ruë S. Jacques, au coin de la ruë des Mathurins, à l’Image Notre-Dame, 1729.
[7] J. H. Lambert, Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett, 1760.
[8] A. Beer, “Determination of the absorption of red light in colored liquids,” Ann. Phys. Chem, vol. 86, pp. 78–88, 1852.
[9] “SORCE » Total Solar Irradiance Data.” [Online]. Available: http://lasp.colorado.edu/home/sorce/data/tsi-data/. [Accessed: 28-Oct-2019].
[10] A. A. Kochanovskij, Ed., Satellite aerosol remote sensing over land. Berlin: Springer [u.a.], 2009.
[11] B. N. Holben et al., “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sensing of Environment, vol. 66, no. 1, pp. 1–16, Oct. 1998.
[12] T. Nakajima and M. Tanaka, “Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 35, no. 1, pp. 13–21, Jan. 1986.
[13] Y. J. Kaufman et al., “Size distribution and scattering phase function of aerosol particles retrieved from sky brightness measurements,” Journal of Geophysical Research: Atmospheres, vol. 99, no. D5, pp. 10341–10356, 1994.
[14] O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D16, pp. 20673–20696, Aug. 2000.
[15] Y. J. Kaufman, A. E. Wald, L. A. Remer, B.-C. Gao, R.-R. Li, and L. Flynn, “The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 1286–1298, Sep. 1997.
[16] D. Tanré, Y. J. Kaufman, M. Herman, and S. Mattoo, “Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D14, pp. 16971–16988, 1997.
[17] R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance,” Journal of Geophysical Research: Atmospheres, vol. 112, no. D13, 2007.
[18] A. M. Sayer, L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, “MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and ‘merged’ data sets, and usage recommendations,” Journal of Geophysical Research: Atmospheres, vol. 119, no. 24, pp. 13,965-13,989, 2014.
[19] N. C. Hsu, S.-C. Tsay, M. D. King, and J. R. Herman, “Aerosol Properties Over Bright-Reflecting Source Regions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 557–569, Mar. 2004.
[20] N. C. Hsu, S.- Tsay, M. D. King, and J. R. Herman, “Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia,” IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 11, pp. 3180–3195, Nov. 2006.
[21] J. R. Herman and E. A. Celarier, “Earth surface reflectivity climatology at 340–380 nm from TOMS data,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D23, pp. 28003–28011, 1997.
[22] R. B. A. Koelemeijer, J. F. de Haan, and P. Stammes, “A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations,” Journal of Geophysical Research: Atmospheres, vol. 108, no. D2, 2003.
[23] T.-H. Lin, P. Yang, and B. Yi, “Effect of black carbon on dust property retrievals from satellite observations,” JARS, vol. 7, no. 1, p. 073568, May 2013.
[24] G. W. Petty, A first course in atmospheric radiation. Sundog Publishing, 2006.
[25] J. R. Meyer-Arendt, Introduction to Classical and Modern Optics. Prentice Hall, 1995.
[26] Y. Iwasaka et al., “Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport,” Air Qual Atmos Health, vol. 2, no. 1, pp. 29–38, Mar. 2009.
[27] J. Sun, M. Zhang, and T. Liu, “Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate,” Journal of Geophysical Research: Atmospheres, vol. 106, no. D10, pp. 10325–10333, 2001.
[28] X. Jiang, Y. Liu, B. Yu, and M. Jiang, “Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area,” Remote Sensing of Environment, vol. 107, no. 1, pp. 45–53, Mar. 2007.
[29] B. Li, H. Yuan, N. Feng, and S. Tao, “Comparing MODIS and AERONET aerosol optical depth over China,” International Journal of Remote Sensing, vol. 30, no. 24, pp. 6519–6529, Nov. 2009.
[30] Z. Meng, P. Yang, G. W. Kattawar, L. Bi, K. N. Liou, and I. Laszlo, “Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations,” Journal of Aerosol Science, vol. 41, no. 5, pp. 501–512, May 2010.
[31] H. Li, C. Liu, L. Bi, P. Yang, and G. W. Kattawar, “Numerical accuracy of ‘equivalent’ spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 14, pp. 2127–2132, Sep. 2010.
[32] Y. Xu and B. Å. S. Gustafson, “A generalized multiparticle Mie-solution: further experimental verification,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 70, no. 4, pp. 395–419, Aug. 2001.
[33] J. F. de Haan, P. B. Bosma, and J. W. Hovenier, “The adding method for multiple scattering calculations of polarized light,” Astronomy and Astrophysics, vol. 183, pp. 371–391, Sep. 1987.
[34] C. Levoni, M. Cervino, R. Guzzi, and F. Torricella, “Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes,” Appl. Opt., AO, vol. 36, no. 30, pp. 8031–8041, Oct. 1997.
[35] K.-E. Chang et al., “Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data,” Environmental Research Letters, vol. 11, no. 8, p. 085002, Aug. 2016.
[36] D. M. Giles et al., “An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions,” Journal of Geophysical Research: Atmospheres, vol. 117, no. D17, 2012.
[37] H. El‐Askary and M. Kafatos, “Dust storm and black cloud influence on aerosol optical properties over Cairo and the Greater Delta region, Egypt,” International Journal of Remote Sensing, vol. 29, no. 24, pp. 7199–7211, Dec. 2008.
[38] M. El‐Metwally, S. C. Alfaro, M. A. Wahab, and B. Chatenet, “Aerosol characteristics over urban Cairo: Seasonal variations as retrieved from Sun photometer measurements,” Journal of Geophysical Research: Atmospheres, vol. 113, no. D14, 2008.
[39] “Relative Humidity in Cairo, Egypt.” [Online]. Available: http://www.cairo.climatemps.com/humidity.php. [Accessed: 29-Oct-2019].
[40] O. Muñoz and H. Volten, “Experimental light scattering matrices from the Amsterdam Light Scattering Database,” in Light Scattering Reviews: Single and Multiple Light Scattering, A. A. Kokhanovsky, Ed. Berlin, Heidelberg: Springer, 2006, pp. 3–29.
[41] O. Muñoz, F. Moreno, D. Guirado, D. D. Dabrowska, H. Volten, and J. W. Hovenier, “The Amsterdam–Granada Light Scattering Database,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 7, pp. 565–574, May 2012.
[42] “Cimel Electronique - Explore the climate.” [Online]. Available: https://www.cimel.fr/. [Accessed: 29-Oct-2019].
[43] 張國恩, “MTSAT-1R衛星資料在東亞沙塵暴監測及氣膠光學厚度反演之探討,” 碩士論文, 國立中央大學太空科學研究所, 國立中央大學, 2010.
[44] 張淵翔, “地球同步衛星(Himawari-8)在逐時大氣氣膠光學厚度之反演與分析,” 碩士論文, 國立中央大學遙測科技碩士學位學程, 國立中央大學, 2017.
[45] 孫達旻, “同時輻射率定法在向日葵八號氣膠光學厚度反演之應用,” 碩士論文, 國立中央大學遙測科技碩士學位學程, 國立中央大學, 2018.
[46] “気象庁 Japan Meteorological Agency.” [Online]. Available: https://www.jma.go.jp/jma/index.html. [Accessed: 29-Oct-2019].
[47] J. Y. Yin and L. H. Liu, “Influence of complex component and particle polydispersity on radiative properties of soot aggregate in atmosphere,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 111, no. 14, pp. 2115–2126, Sep. 2010.
[48] C. Liu, R. L. Panetta, and P. Yang, “The Influence of Water Coating on the Optical Scattering Properties of Fractal Soot Aggregates,” Aerosol Science and Technology, vol. 46, no. 1, pp. 31–43, Jan. 2012.
[49] W. Li and L. Shao, “Transmission electron microscopy study of aerosol particles from the brown hazes in northern China,” Journal of Geophysical Research: Atmospheres, vol. 114, no. D9, 2009.
[50] W. J. Li, L. Y. Shao, and P. R. Buseck, “Haze types in Beijing and the influence of agricultural biomass burning,” Atmospheric Chemistry and Physics, vol. 10, no. 17, pp. 8119–8130, Sep. 2010.
[51] W. J. Li, D. Z. Zhang, L. Y. Shao, S. Z. Zhou, and W. X. Wang, “Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China plain,” Atmospheric Chemistry and Physics, vol. 11, no. 22, pp. 11733–11744, Nov. 2011.
[52] E. Swietlicki et al., “Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2,” Tellus B, vol. 52, no. 2, pp. 201–227, 2000.
[53] E. Weingartner, M. Gysel, and U. Baltensperger, “Hygroscopicity of Aerosol Particles at Low Temperatures. 1. New Low-Temperature H-TDMA Instrument:  Setup and First Applications,” Environ. Sci. Technol., vol. 36, no. 1, pp. 55–62, Jan. 2002.
[54] S. R. Forrest and T. A. Witten, “Long-range correlations in smoke-particle aggregates,” J. Phys. A: Math. Gen., vol. 12, no. 5, pp. L109–L117, May 1979.
[55] A. V. Filippov, M. Zurita, and D. E. Rosner, “Fractal-like Aggregates: Relation between Morphology and Physical Properties,” Journal of Colloid and Interface Science, vol. 229, no. 1, pp. 261–273, Sep. 2000.
[56] C. M. Sorensen and G. C. Roberts, “The Prefactor of Fractal Aggregates,” Journal of Colloid and Interface Science, vol. 186, no. 2, pp. 447–452, Feb. 1997.
[57] M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A, JOSAA, vol. 8, no. 6, pp. 871–882, Jun. 1991.
[58] N. G. Khlebtsov, “Orientational averaging of light-scattering observables in the T-matrix approach,” Appl. Opt., AO, vol. 31, no. 25, pp. 5359–5365, Sep. 1992.
[59] Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt., AO, vol. 34, no. 21, pp. 4573–4588, Jul. 1995.
[60] Y. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Opt., AO, vol. 36, no. 36, pp. 9496–9508, Dec. 1997.
[61] M. Fan et al., “Scattering properties of soot-containing particles and their impact by humidity in 1.6μm,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 134, pp. 91–103, Feb. 2014.
[62] G. A. D’Almeida, E. P. Shettle, and P. Koepke, Atmospheric aerosols: global climatology and radiative characteristics. Hampton, Va., USA: A. Deepak Pub, 1991.
[63] M. Gysel et al., “Properties of jet engine combustion particles during the PartEmis experiment: Hygroscopicity at subsaturated conditions,” Geophysical Research Letters, vol. 30, no. 11, 2003.
[64] A. F. Khalizov, R. Zhang, D. Zhang, H. Xue, J. Pagels, and P. H. McMurry, “Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor,” Journal of Geophysical Research, vol. 114, no. D5, Mar. 2009.
[65]E. F. Mikhailov and S. S. Vlasenko, “Structure and optical properties of soot aerosol in a moist atmosphere: 1. Structural changes of soot particles in the process of condensation,” Izv. Atmos. Ocean. Phys., vol. 43, no. 2, pp. 181–194, Apr. 2007, doi: 10.1134/S0001433807020053.
[66]E. F. Mikhailov, S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan, “Optical properties of soot–water drop agglomerates: An experimental study,” Journal of Geophysical Research: Atmospheres, vol. 111, no. D7, 2006, doi: 10.1029/2005JD006389.
[67]E. Weingartner, H. Burtscher, and U. Baltensperger, “Hygroscopic properties of carbon and diesel soot particles,” Atmospheric Environment, vol. 31, no. 15, pp. 2311–2327, Aug. 1997, doi: 10.1016/S1352-2310(97)00023-X.
[68] R. A. Dobbins, R. A. Fletcher, and H.-C. Chang, “The evolution of soot precursor particles in a diffusion flame,” Combustion and Flame, vol. 115, no. 3, pp. 285–298, Nov. 1998.
[69] L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” Journal of Geophysical Research: Atmospheres, vol. 110, no. D11, 2005.
[70] L. Liu and M. I. Mishchenko, “Scattering and radiative properties of complex soot and soot-containing aggregate particles,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 106, no. 1, pp. 262–273, Jul. 2007.
[71] Ü. Ö. Köylü and G. M. Faeth, “Structure of overfire soot in buoyant turbulent diffusion flames at long residence times,” Combustion and Flame, vol. 89, no. 2, pp. 140–156, May 1992.
[72] M. Hess, P. Koepke, and I. Schult, “Optical Properties of Aerosols and Clouds: The Software Package OPAC,” Bull. Amer. Meteor. Soc., vol. 79, no. 5, pp. 831–844, May 1998.
[73] T. A. Witten and L. M. Sander, “Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon,” Phys. Rev. Lett., vol. 47, no. 19, pp. 1400–1403, Nov. 1981.
[74] P. Meakin, “Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation,” Phys. Rev. Lett., vol. 51, no. 13, pp. 1119–1122, Sep. 1983.
[75] E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, and J.- Morcette, “Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 675–686, May 1997.
[76] S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and J. Frank J. Klemm, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance,” Appl. Opt., AO, vol. 45, no. 26, pp. 6762–6774, Sep. 2006.
[77] S. Y. Kotchenova and E. F. Vermote, “Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces,” Appl. Opt., AO, vol. 46, no. 20, pp. 4455–4464, Jul. 2007.
[78] Y. Liu and M. Shao, “Estimation and prediction of black carbon emissions in Beijing City,” CHINESE SCI BULL, vol. 52, no. 9, pp. 1274–1281, May 2007.
[79]S. D. Forestieri et al., “Measurement and modeling of the multiwavelength optical properties of uncoated flame-generated soot,” Atmospheric Chemistry and Physics, vol. 18, no. 16, pp. 12141–12159, Aug. 2018.
[80]M. Schnaiter, M. Gimmler, I. Llamas, C. Linke, C. Jäger, and H. Mutschke, “Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion,” Atmospheric Chemistry and Physics, vol. 6, no. 10, pp. 2981–2990, Jul. 2006.
[81]M. Schnaiter, H. Horvath, O. Möhler, K.-H. Naumann, H. Saathoff, and O. W. Schöck, “UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols,” Journal of Aerosol Science, vol. 34, no. 10, pp. 1421–1444, Oct. 2003.
[82]G. Saliba et al., “Optical properties of black carbon in cookstove emissions coated with secondary organic aerosols: Measurements and modeling,” Aerosol Science and Technology, vol. 50, no. 11, pp. 1264–1276, Nov. 2016.
[83] “6SV - Home.” [Online]. Available: http://6s.ltdri.org/. [Accessed: 28-Oct-2019].
指導教授 林唐煌(Tang-Huang Lin) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明