博碩士論文 106827025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.135.182.75
姓名 粘佩儒(Pei-Ju Nien)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 可控化矽烷化:以巰基氮矽三環之硫醇-烯加成反應發展可功能化之抗沾黏生物介面
(Controlled Silanization: Functional Antifouling Biointerfaces Developed via Thiol-ene Chemistry with Mercaptosilatrane)
相關論文
★ 可功能化抗沾黏性雙離子自組裝單層膜於生物感測器之應用★ 雙離子胺基酸吸附劑在血液中重金屬 吸附之應用
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 新型兩性磷脂類高分子聚合物與其自組裝奈米結構
★ 聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用★ 磺基甜菜鹼基自組裝單分子層的形成、穩定性和抗污染性的比較研究
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ 開發可生物降解的完全磷酸膽鹼水凝膠★ Development of Functional Biointerface by Mixed Oligomeric Silatranes
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry
★ Disulfide-based cross-linkers for functional polymeric networks★ 建立雙離子高分子修飾蛋白質技術與分析
★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER★ 以鄰苯二酚與金屬離子螯合方式形成抗菌及抗污之表面塗層研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於生物感測器的作業環境複雜,非特異性吸附現象往往影響生物感測器訊號判讀,因此本研究利用表面工程技術降低生物感測器介面的非特異性吸附,同時提供可功能化修飾的特性,化學接枝生物識別分子(bio-recognition elements),以提高生物感測器的訊噪比(signal-to-noise ratio, S/N ratio)。矽烷官能基(silane)常用於形成自組裝薄膜(self-assembled monolayer, SAM),然而因其容易水解,常會導致分子團聚和表面修飾不均勻。相反地,氮矽三環結構(silatrane)因存在氮和矽之間的分子內相互作用,而具有較高的化學穩定性,因此可以控制矽烷化過程並提高均勻性,藉此提升感測器的靈敏度與再現性。在這項研究中,2-甲基丙烯醯氧基乙基磷酸膽鹼(2-methacryloyloxyethyl phosphorylcholine , MPC)和帶有羧酸基的聚乙二醇(poly(ethylene glycol), PEG)將通過硫醇-烯加成反應(thiol-ene reaction)與巰基氮矽三環(mercaptosilatrane, MPS)聚合。MPC和PEG具有出色的生物相容性和抗非特異性吸附能力,此外,PEG上的羧基可以轉化為可功能化的中間體以產生具有生物選擇性的表面。在抗沾黏測試中,表面塗佈塗層MPS-MPC5後,細菌與蛋白質的貼附量明顯地降低。在矽烷官能基與氮矽三環的表面型態比較中,氮矽三環的表面呈現較佳的均勻性。接著,使用MPS-MPC3-carboxylated PEG2進行生物感測器的測試。光纖式粒子電漿共振感測儀(fiber optic particle plasmon resonance, FOPPR)是利用奈米金粒子獨特光學性質與光纖全反射特性組成的高靈敏生物檢測系統。將MPS-MPC3-carboxylated PEG2修飾於感測區後可降低其非特異性吸附現象,並且在多濃度測試中,從2.5 × 10-13 g / mL至2.5 × 10-8 g / mL有可靠的線性響應,其偵測極限為3.1 × 10-14 g / mL。此新型的共聚物為基材表面帶來較佳的均勻性、良好的抗汙效果及可功能化的特性,具有極大的潛力,能因應市場需求、促進生物感測器的發展。
摘要(英) Surface modification for biosensors is of importance for improving specificity and sensitivity, particularly for the detection in complex medium. Modifier, silane, is commonly used to form a self-assemble monolayer (SAM). However, silane molecules are very sensitive to moisture and environmental conditions, resulting in agglomeration and rough surface. Very recently, we demonstrated that silatrane is chemically stable to hydrolysis because of its transannular bond between nitrogen and silicon. Therefore, the silanization procedure is controlled and the homogeneity is improved by using silatranes. In this study, 2-methacryloyloxyethyl phosphorylcholine (MPC) and carboxylated poly(ethylene glycol) (carboxylated PEG) will be chemically attached to mercaptosilatrane (MPS) via thiol-ene reaction. MPC and carboxylated PEG provide excellent biocompatibility and high resistance to nonspecific adsorption. Besides, the carboxyl group can be transformed into functional intermediate for conjugation of bio-recognition elements to develop a sensing surface. In an antifouling test, both of bacterial adhesion and protein adsorption on the surface were reduced significantly after modification of MPS-MPC5. In the comparison of silane and silatrane, silatrane showed better homogeneity than silane. Next, MPS-MPC3-carboxylated PEG2 was synthesized to perform molecular detection. Fiber optic particle plasmon resonance (FOPPR) is a rapid and ultrasensitive biosensing device based on fiber optic nanogold-linked immunosorbent assay. It showed the lower nonspecific adsorption after MPS-MPC3-carboxylated PEG2 modified the detection region. For the multiple concentration test, it provides a wide linear response range from 2.5×10-13 g/mL to 2.5×10-8 g/mL (6 orders) and an extremely low limit of detection of 3.1×10-14 g/mL for NT-proBNP(1-76), which is an important biomarker for heart failure. The new type of functional silatrane assemblies offers antifouling properties, great homogeneity, and functionalized capacity. It has great potential to improve the development of biosensors.
關鍵字(中) ★ 可控矽烷化
★ 非特異性吸附
★ 生物感測器介面
★ 雙離子材料
★ 聚乙二醇
關鍵字(英) ★ controllable silanization
★ nonspecific adsorption
★ biosensor interface
★ zwitterionic materials
★ poly(ethylene glycol)
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xi
一、文獻回顧 1
1-1  生物感測器 1
1-1-1 影響生物感測器訊號之因素 2
1-2  自組裝抗汙塗層 3
1-2-1 矽烷官能基 4
1-2-2 氮矽三環類化合物 9
1-3  抗非特異性吸附之材料 14
1-3-1 非特異性吸附現象 14
1-3-2 抗沾黏材料特性 15
1-3-3 聚乙二醇材料 15
1-3-4 雙離子材料 15
1-3-5 PC類雙離子材料 16
1-4  硫醇-烯加成反應 18
1-5  生物辨識元件之固定化流程 20
1-6  光纖式奈米生物感測儀 22
二、研究目的 23
三、實驗藥品與設備及實驗方法 24
3-1  實驗藥品與設備 24
3-2  材料合成 27
3-2-1 巰基氮矽三環(MPS) 27
3-2-2 聚乙二醇羧酸化之過程 27
3-2-3 MPS-MPCn-carboxylated PEGm 28
3-2-4 無水甲醇之製備 29
3-3  實驗方法 29
3-3-1 自組裝分子膜之製備 29
3-3-2 衰減全反射傅立葉轉換紅外線光譜(Attenuated total reflectance-fourier transform infrared spectra,ATR-FTIR)鑑定 29
3-3-3 水接觸角之量測 30
3-3-4 薄膜厚度之量測 30
3-3-5 表面型態之測量 30
3-3-6 表面元素鑑定 30
3-3-7 細菌貼附測試 31
3-3-8 蛋白質貼附測試 31
3-3-9 以傳統三明治法偵測目標物 32
3-3-10 光纖式粒子電漿共振奈米生物感測器(Fiber optic particle plasmon resonance,FOPPR)偵測目標物 32
四、結果與討論 34
4-1  以MPS-MPCn比較分子鏈長對修飾效果之影響 34
4-1-1 MPS-MPCn之NMR光譜圖 34
4-1-2 MPS-MPCn之薄膜接觸角量測 36
4-1-3 MPS-MPCn之薄膜厚度量測 36
4-1-4 MPS-MPCn之抗細菌沾黏測試 37
4-1-5 MPS-MPCn之抗蛋白質沾黏測試 39
4-2  比較MPS-MPC5與MPTMS-MPC5 41
4-2-1 MPTMS-MPC5之NMR頻譜分析 41
4-2-2 MPS-MPC5與MPTMS-MPC5之水接觸角比較 42
4-2-3 MPS-MPC5與MPTMS-MPC5之抗生物分子沾黏測試 42
4-2-4 MPS-MPC5與MPTMS-MPC5之表面型態分析 44
4-2-5 MPS-MPC5與MPTMS-MPC5之薄膜厚度比較 45
4-3  以MPS-MPCn-carboxylated PEGm偵測目標物 46
4-3-1 Carboxylated PEG之NMR圖譜分析 46
4-3-2 Carboxylated PEG之FTIR圖譜分析 47
4-3-3 MPS-MPCn-carboxylated PEGm表面元素分析 48
4-3-4 探討表面的活性位(active site)比例對目標物訊號影響 50
4-3-5 探討目標物濃度對偵測訊號之影響(ELISA) 51
4-3-6 以FOPPR測試抗非特異性吸附能力 52
4-3-7 以FOPPR進行多濃度測試 53
五、結論 56
六、未來展望 57
七、參考文獻 58
參考文獻 1. The´venot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical Biosensors: Recommended Definitions and Classification. Biosensors & Bioelectronics 2001, 16, 121-131.
2. Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M., Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. Sensors (Basel) 2015, 15 (12), 30011-31.
3. Alahi, M. E. E.; Mukhopadhyay, S. C., Detection Methodologies for Pathogen and Toxins: A Review. Sensors (Basel) 2017, 17 (8).
4. Chakraborty, M.; Hashmi, M. S. J., An Overview of Biosensors and Devices. 2017.
5. Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P., Introduction to Biosensors. Essays Biochem 2016, 60 (1), 1-8.
6. Bizzotto, D.; Burgess, I. J.; Doneux, T.; Sagara, T.; Yu, H. Z., Beyond Simple Cartoons: Challenges in Characterizing Electrochemical Biosensor Interfaces. ACS Sens 2018, 3 (1), 5-12.
7. Zhang, Z.; Chen, S.; Jiang, S., Dual-Functional Biomimetic Materials: Nonfouling Poly(carboxybetaine) with Active Functional Groups for Protein Immobilization. Biomacromolecules 2006, 7, 3311-3315.
8. Wang, Y. S.; Yau, S.; Chau, L. K.; Mohamed, A.; Huang, C. J., Functional Biointerfaces Based on Mixed Zwitterionic Self-Assembled Monolayers for Biosensing Applications. Langmuir 2019, 35 (5), 1652-1661.
9. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103-1169.
10. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533-1554.
11. Faucheux, N.; Schweiss, R.; Lutzow, K.; Werner, C.; Groth, T., Self-assembled Monolayers with Different Terminating Groups as Model Substrates for Cell Adhesion Studies. Biomaterials 2004, 25 (14), 2721-30.
12. Sullivan, T. P.; Huck, W. T. S., Reactions on Monolayers: Organic Synthesis in Two Dimensions. Eur. J. Org. Chem. 2003, 17-29.
13. Chandekar, A.; Sengupta, S. K.; Whitten, J. E., Thermal Stability of Thiol and Silane Monolayers: A Comparative Study. Applied Surface Science 2010, 256 (9), 2742-2749.
14. Marta Cerruti; Stefano Fissolo; Carlo Carraro; Carlo Ricciardi; Arun Majumdar; Maboudian, R., Poly(ethylene glycol) Monolayer Formation and Stability on Gold and Silicon Nitride Substrates. Langmuir 2008, 24, 10646-10653.
15. Witucki, G. L., A Silane Primer: Chemistry and Applications of AIkoxy Silanes. Coatings Technology Reprint 1993, 65, 57-60.
16. Ye, S. H.; Jang, Y. S.; Yun, Y. H.; Shankarraman, V.; Woolley, J. R.; Hong, Y.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Surface Modification of a Biodegradable Magnesium Alloy with Phosphorylcholine (PC) and Sulfobetaine (SB) Functional Macromolecules for Reduced Thrombogenicity and Acute Corrosion Resistance. Langmuir 2013, 29 (26), 8320-7.
17. Ye, S. H.; Johnson, C. A., Jr.; Woolley, J. R.; Murata, H.; Gamble, L. J.; Ishihara, K.; Wagner, W. R., Simple Surface Modification of a Titanium Alloy with Silanated Zwitterionic Phosphorylcholine or Sulfobetaine Modifiers to Reduce Thrombogenicity. Colloids Surf B Biointerfaces 2010, 79 (2), 357-64.
18. Vlachopoulou, M. E.; Tserepi, A.; Pavli, P.; Argitis, P.; Sanopoulou, M.; Misiakos, K., A low temperature surface modification assisted method for bonding plastic substrates. Journal of Micromechanics and Microengineering 2009, 19 (1), 015007.
19. Yeh, S. B.; Chen, C. S.; Chen, W. Y.; Huang, C. J., Modification of Silicone Elastomer with Zwitterionic Silane for Durable Antifouling Properties. Langmuir 2014, 30 (38), 11386-93.
20. Ogata, Y.; Seto, H.; Murakami, T.; Hoshino, Y.; Miura, Y., Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-acetyl-d-glucosamine. Membranes (Basel) 2013, 3 (3), 169-81.
21. Gauthier, S.; Aime, J. P.; Bouhacina, T.; Attias, A. J.; B., D., Study of Grafted Silane Molecules on Silica Surface with an Atomic Force Microscope. Langmuir 1996, 12, 5126-5137.
22. Estephan, Z. G.; Jaber, J. A.; Schlenoff, J. B., Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir 2010, 26 (22), 16884-9.
23. Zhu, M.; Lerum, M. Z.; Chen, W., How to Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-derived Layers on Silica. Langmuir 2012, 28 (1), 416-23.
24. Michael W. Schmidt; Windus, T. L.; Gordon, M. S., Structural Trends in Silicon Atranes. American Chemical Society 1995, 117, 7480-7486.
25. Pestunovich, V.; Kirpichenko, S.; Voronkov, M., Silatranes and their Tricyclic Analogs. 2009.
26. Tseng, Y. T.; Lu, H. Y.; Li, J. R.; Tung, W. J.; Chen, W. H.; Chau, L. K., Facile Functionalization of Polymer Surfaces in Aqueous and Polar Organic Solvents via 3-Mercaptopropylsilatrane. ACS Appl Mater Interfaces 2016, 8 (49), 34159-34169.
27. Huang, C. J.; Zheng, Y. Y., Controlled Silanization Using Functional Silatrane for Thin and Homogeneous Antifouling Coatings. Langmuir 2019, 35 (5), 1662-1671.
28. Huang, K.-W.; Hsieh, C.-W.; Kan, H.-C.; Hsieh, M.-L.; Hsieh, S.; Chau, L.-K.; Cheng, T.-E.; Lin, W.-T., Improved Performance of Aminopropylsilatrane over Aminopropyltriethoxysilane as a Linker for Nanoparticle-based Plasmon Resonance Sensors. Sensors and Actuators B: Chemical 2012, 163 (1), 207-215.
29. Lin, P.; Lin, C. W.; Mansour, R.; Gu, F., Improving Biocompatibility by Surface Modification Techniques on Implantable Bioelectronics. Biosens Bioelectron 2013, 47, 451-60.
30. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A Survey of Structure-Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir 2001, 17, 5605-5620.
31. Roberts, M. J.; Bentley, M. D.; Harris, J. M., Chemistry for Peptide and Protein PEGylation. Advanced Drug Delivery Reviews 2002, 54, 459-476.
32. Luk, Y.-Y.; Kato, M.; Mrksich, M., Self-Assembled Monolayers of Alkanethiolates Presenting Mannitol Groups Are Inert to Protein Adsorption and Cell Attachment. Langmuir 2000, 16, 9604-9608.
33. Chen, S.; Li, L.; Zhao, C.; Zheng, J., Surface Hydration: Principles and Applications toward Low-fouling/nonfouling Biomaterials. Polymer 2010, 51 (23), 5283-5293.
34. Wieland, B.; Lancaster, J. P.; Hoaglund, C. S.; Holota, P.; Tornquist, W. J., Electrochemical and Infrared Spectroscopic Quantitative Determination of the Platinum-Catalyzed Ethylene Glycol Oxidation Mechanism at CO Adsorption Potentials. Langmuir 1996, 12, 2594-2601.
35. Harris, J. M.; York, S. S. B. M. N., Introducdon to Blotechnlcal and Biomedical Appllcadons of Poly(Ethylene Glycol). Poly(Ethylene Glycol) Chemistry: Biotechical and Biomedical Applications 1992, 1-14.
36. Zwaal, R. F. A.; Schroit, A. J., Pathophysiologic Implications of Membrane Phospholipid Asymmetry in Blood Cells. Blood 1997, 89, 1121-1132.
37. Holmlin, R. E.; Chen, X.; Chapman, R. G.; Takayama, S.; Whitesides, G. M., Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer. Langmuir 2001, 17, 2841-2850.
38. Kadoma, Y., Synthesis and hemolysis test of the polymer containing phosphorylcholine groups. Koubunshi Ronbunshu 1978, 35, 423-427.
39. Ishihara, K.; Ueda, T.; Nakabayashi, N., Preparation of Phospholipid Polymers and Their Properties as Polymer Hydrogel Membranes. Polymer 1990, 22, 355-360.
40. Chen, S. H.; Chang, Y.; Ishihara, K., Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization. Langmuir 2017, 33 (2), 611-621.
41. Azuma, T.; Ohmori, R.; Teramura, Y.; Ishizaki, T.; Takai, M., Nano-structural Comparison of 2-Methacryloyloxyethyl Phosphorylcholine and Ethylene Glycol-based Surface Modification for Preventing Protein and Cell Adhesion. Colloids Surf B Biointerfaces 2017, 159, 655-661.
42. Wei Feng; Shiping Zhu; Kazuhiko Ishihara; Brash, J. L., Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir 2005, 21, 5980-5987.
43. Posner, T., Über die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Berichte Der Dtsch Chem Gesellschaft 1905, 38, 646–57.
44. Sy Piecco, K. W. E.; Aboelenen, A. M.; Pyle, J. R.; Vicente, J. R.; Gautam, D.; Chen, J., Kinetic Model under Light-Limited Condition for Photoinitiated Thiol-Ene Coupling Reactions. ACS Omega 2018, 3 (10), 14327-14332.
45. O′Brien, A. K.; Cramer, N. B.; Bowman, C. N., Oxygen Inhibition in Thiol–acrylate Photopolymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (6), 2007-2014.
46. Machado, T. O.; Sayer, C.; Araujo, P. H. H., Thiol-ene Polymerisation: A Promising Technique to Obtain Novel Biomaterials. European Polymer Journal 2017, 86, 200-215.
47. Rusmini, F.; Zhong, Z.; Feijen, J., Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 2007, 8, 1775-1789.
48. Choi, H. J.; Kim, N. H.; Chung, B. H.; Seong, G. H., Micropatterning of Biomolecules on Glass Surfaces Modified with Various Functional Groups Using Photoactivatable Biotin. Anal Biochem 2005, 347 (1), 60-6.
49. Vashist, S. K., Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics (Basel) 2012, 2 (3), 23-33.
50. Vaisocherova, H.; Brynda, E.; Homola, J., Functionalizable Low-fouling Coatings for Label-free Biosensing in Complex Biological Media: Advances and Applications. Anal Bioanal Chem 2015, 407 (14), 3927-53.
51. Cheng, S.-F.; Chau, L.-K., Colloidal Gold-Modified Optical Fiber for Chemical and Biochemical Sensing. American Chemical Society 2003, 75, 16-21.
52. RAICHLIN, Y.; KATZIR, A., Fiber-Optic Evanescent Wave Spectroscopy in the Middle Infrared. Applied Spectroscopy 2008, 62, 55-72.
53. Chiang, C. Y.; Hsieh, M. L.; Huang, K. W.; Chau, L. K.; Chang, C. M.; Lyu, S. R., Fiber-optic Particle Plasmon Resonance Sensor for Detection of Interleukin-1beta in Synovial Fluids. Biosens Bioelectron 2010, 26 (3), 1036-42.
54. Chiang, C.-Y.; Huang, T.-T.; Wang, C.-H.; Huang, C.-J.; Tsai, T.-H.; Yu, S.-N.; Chen, Y.-T.; Hong, S.-W.; Hsu, C.-W.; Chang, T.-C.; Chau, L.-K., Fiber Optic Nanogold-linked Immunosorbent Assay for Rapid Detection of Procalcitonin at Femtomolar Concentration Level. Biosensors and Bioelectronics 2019, 111871.
55. Chieng, B.; Ibrahim, N.; Yunus, W.; Hussein, M., Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 2013, 6 (1), 93-104.
56. Lim, S.; Lee, K.; Shin, I.; Tron, A.; Mun, J.; Yim, T.; Kim, T.-H., Physically Cross-linked Polymer Binder Based on Poly(acrylic acid) and Ion-conducting Poly(ethylene glycol-co-benzimidazole) for Silicon Anodes. Journal of Power Sources 2017, 360, 585-592.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2020-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明