參考文獻 |
1. 王瀚德,「小波理論與類神經網路應用於潮汐之預測與補遺」,國立中山大學海洋環境及工程學系,碩士論文,2001。
2. 林聖鈞,「應用小波分析辨識地下水水位模擬之類神經網路架構」,國立臺灣大學土木工程學系,碩士論文,2008。
3. 林遠見、余化龍、陳家榜,「降雨與地下水空間時間變動之交叉小波分析-以屏東平原為例」,2015。
4. 陳忠偉、謝壎煌、李振誥,「台北盆地地下水可再利用量評估」,農業工程學報第54卷第1期,70-84頁,2008年3月。
5. 黃瓊珠、莊士賢、李汴軍、王得根,「小波轉換應用於潮位資料品管之研究」,第30 屆海洋工程研討會論文集,793-798頁,國立交通大學,2008年11月。
6. 劉振宇、林俊男、洪有仁、張誠信,「金門地區地面水與地下水聯合運用」,臺灣水利第55卷第2期,44-52頁,2007年6月。
7. 廖啟佑,「應用類神經網路與小波理論分析地震前地下水位波動」,國立台北科技大學土木與防災研究所,碩士論文,2005
8. Adamowski, J., Chan, H.F., "A wavelet neural network conjunction model for groundwater level forecasting", Journal of Hydrology, Vol.407, pp.28-40, 2011.
9. Adamowski, J., Sun, K., "Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds", Journal of Hydrology, Vol.390, pp.85-91, 2010.
10. Alizadeh, M.J., Kavianpour, M.R., "Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean", Marine Pollution Bulletin, Vol.98, pp.171-178, 2015.
11. Andrade, L.C.M., Oleskovicz, M., Fernandes, R.A.S., "Adaptive threshold based on wavelet transform applied to the segmentation of single and combined power quality disturbances", Applied Soft Computing, Vol.38, pp.967-977, 2016.
12. Araghinejad, S., Azmi, M., Kholghi, M., "Application of artificial neural network ensembles in probabilistic hydrological forecasting", Journal of Hydrology, Vol.407, pp.94-104, 2011.
13. Ball, J.E., Luk, K.C., Sharma, A., "A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting", Journal of Hydrology, Vol.227, pp.56-65, 2000.
14. Beran, J., Heiler, M.A., "A nonparametric regression cross spectrum for multivariate time series", Journal of Multivariate Analysis, Vol.99, pp.684-714, 2008.
15. Cao, L., Hong, Y., Fang, H., He, G., "Predicting chaotic time series with wavelet networks", Physica D, Vol.85, pp.225-238, 1995.
16. Chen, I.-T., Chang, L.-C., Chang, F.-J., "Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps", Journal of Hydrology, Vol.556, pp.131–142, 2018.
17. Chiou, J.-M., Yang, Y.-F., Chen, Y.-T., "Multivariate functional linear regression and prediction", Journal of Multivariate Analysis, Vol.146, pp.301-312, 2016.
18. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I., "Groundwater level forecasting using artificial neural networks", Journal of Hydrology, Vol.309, pp.229-240, 2005.
19. Du, K., Zhao, Y., Lei, J., "The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series", Journal of Hydrology, Vol.552, pp.44-51, 2017.
20. Ebrahimi, H., Rajaee, T., "Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine ", Global and Planetary Change, Vol.148, pp.181-191, 2017.
21. Grinsted, A., Moore, J. C., Jevrejeva, S., "Application of the cross wavelet transform and wavelet coherence to geophysical time series", Nonlinear Processes in Geophysics, Vol.11, pp.561-566, 2004.
22. Karthikeyan, L., Kumar, D.N., "Predictability of nonstationary time series using wavelet and EMD based ARMA models", Journal of Hydrology, Vol.502, pp.103-119, 2013.
23. Labat, D., "Cross wavelet analyses of annual continental freshwater discharge and selected climate indices", Journal of Hydrology, Vol.385, pp.269-278, 2010.
24. Maiti, S., Tiwari, R. K., "A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction", Environmental Earth Sciences, Vol.71, pp.3147-3160, 2014.
25. Nalley, D., Adamowski, J., Khalil, B., "Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008)", Journal of Hydrology, Vol.475, pp.204-228, 2012.
26. Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., "Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review", Journal of Hydrology, Vol.514, pp.358-377, 2014.
27. Oh, Y.-Y., Yun, S.-T., Yu, S., Hamm, S.-Y., "The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer.", Journal of Hydrology, Vol.555, pp.938–955, 2017.
28. Ozger, M., Mishra, A.K., Singh, V.P., "Scaling characteristics of precipitation data in conjunction with wavelet analysis", Journal of Hydrology, Vol.395, pp.279-288, 2010.
29. Piotrowski, A.P., Napiorkowski, J.J., "Optimizing neural networks for river flow forecasting – Evolutionary Computation methods versus the Levenberg–Marquardt approach", Journal of Hydrology, Vol.407, pp.12-27, 2011.
30. Quilty, J., Adamowski, J., "Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework", Journal of Hydrology, Vol.563, pp.336-353, 2018.
31. Sahoo,S., Jha, M.K., "Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment", Hydrogeology Journal, Vol.21, pp.1865-1887, 2013.
32. Salerno, F., Tartari, G., "A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments", Journal of Hydrology, Vol.376, pp.295-306, 2009.
33. Sang, Y., Wang, Z., Liu, C., "Period identification in hydrologic time series using empirical mode decomposition and maximum entropy spectral analysis", Journal of Hydrology, Vol.424-425, pp.154-164, 2012.
34. Shiri, J., Kisi, O., Yoon, H., Lee, K.-K., Hossein Nazemi, A., "Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques", Computers & Geosciences, Vol.56, pp.32-44, 2013.
35. Shoaib, M., Shamseldin, A.Y, Melville, B.W., Khan, M.M., "Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach", Journal of Hydrology, Vol.527, pp.326-344, 2015.
36. Yoon, H., Jun, S.-C., Hyun, Y., Bae, G.-O., Lee, K.-K., "A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer", Journal of Hydrology, Vol.396, pp.128-138, 2011.
37. Yoon, H., Hyun, Y., Ha, K., Lee, K.-K., Kim, G.-B., "A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions", Computers & Geosciences, Vol.90, pp.144-155, 2016.
38. Yu, C., Luo, L. Chan, L.L.H. Rakthanmanon, T. Nutanong, S., "A fast LSH-based similarity search method for multivariate time series", Information Sciences, Vol.476, pp.337-356, 2019.
39. Yu, H.-L.,Lin, Y.-C., "Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods", Journal of Hydrology, Vol.525, pp.585-597, 2015.
40. Zhang, K., Gençay, R., Ege Yazgan, M., "Application of wavelet decomposition in time-series forecasting", Economics Letters, Vol.158, pp.41-46, 2017.
41. Zhu, L., Wang, Y., Fan, Q., "MODWT-ARMA model for time series prediction", Applied Mathematical Modelling, Vol.38, pp.1859-1865, 2014. |