參考文獻 |
(1) Morris, B. A. The science and technology of flexible packaging: multilayer films from resin and process to end use. William Andrew, 2016.
(2) Stamm, M. Polymer surfaces and interfaces. Characterization, Modification and Applications, Springer, Berlin, Germany, 2008.
(3) Wouters, M.; de Ruiter, B. Contact-angle development of polymer melts. Prog. Org. Coat. 2003, 48, 207-213.
(4) Moreira, J. C.; Demarquette, N. R. Influence of temperature, molecular weight, and molecular weight dispersity on the surface tension of PS, PP, and PE. I. Experimental. J. Appl. Polym. Sci. 2001, 82, 1907-1920.
(5) Siow, L. S.;Patterson, D. The prediction of surface tensions of liquid polymers. Macromolecules 1971, 4, 26-30.
(6) LeGrand, D. G.; Gaines Jr, G. L. The molecular weight dependence of polymer surface tension. J. Colloid Interface Sci. 1969, 31, 162-167.
(7) Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T. Interfacial tension of immiscible polymer blends: temperature and molecular weight dependence. Macromolecules 1988, 21, 2980-2987.
(8) Dee, G. T.; Sauer, B. B. The surface tension of polymer liquids. Adv. Phys. in Physics 1998, 47, 161-205.
(9) Wu, S. Polymer interface and adhesion. M. Dekker, New York, 1982.
(10) Chee, K. K. Molecular weight dependence of surface tension of polystyrene as studied by the corresponding states principle. J. Appl. Polym. Sci. 1998, 70(4), 697-703.
(11) Young, T. III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London, Ser. 1805, 65-87.
(12) Adam, N. K. Use of the term ‘Young′s Equation’for contact angles. Nature 1957, 180 809-810.
(13) Wu, S. Calculation of interfacial tension in polymer systems. J. Polym. Sci., Part C. 1971, 19-30.
(14) Fan, C. F.; Caǧin, T. Wetting of crystalline polymer surfaces: A molecular dynamics simulation. J. Chem. Phys. 1995, 103, 9053-9061.
(15) Takayama, T.; Todo, M. Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition. J. Mater. Sci. Lett. 2006, 41, 4989-4992.
(16) Hamad, K.; Kaseem, M.; Deri, F. Rheological and mechanical properties of poly (lactic acid)/polystyrene polymer blend. Polym. Bull. 2010, 65, 509-519.
(17) Reddy, N.; Nama, D.; Yang, Y. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab. 2008, 93, 233-241.
(18) Yethiraj, A. Entropic and enthalpic surface segregation from blends of branched and linear polymers. Phys. Rev. Lett. 1995, 7411, 2018.
(19) Lee, J. S.; Lee, N. H., Peri, S.; Foster, M. D., Majkrzak; C. F., Hu, R.; Wu, D. T. Surface segregation driven by molecular architecture asymmetry in polymer blends, Phys. Rev. Lett. 2014, 113, 225702.
(20) Hong, P. P.; Boerio, F. J.; Smith, S. D. Effect of annealing time, film thickness, and molecular weight on surface enrichment in blends of polystyrene and deuterated polystyrene. Macromolecules 1994, 27, 596-605.
(21) Teng, C. Y.; Sheng, Y. J.; Tsao, H. K. Boundary-induced segregation in nanoscale thin films of athermal polymer blends. Soft Matter 2016, 12, 4603-4610.
(22) Tanaka, K.; Takahara, A.; Kajiyama, T. Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends. Macromolecules 1996, 29, 3232-3239.
(23) Tanaka, K.; Takahara, A.; Kajiyama, T. Ultrathinning-induced surface phase separation of polystyrene/poly (vinyl methyl ether) blend film. Macromolecules 1995, 28, 934-938.
(24) Warren, P. B. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E 2003, 68, 066702.
(25) Ghoufi, A.; Emile, J.; Malfreyt, P. Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces. Eur. Phys. J. E 2013, 36, 1-12.
(26) Arienti, M.; Pan, W.; Li, X.; Karniadakis, G. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J. Chem. Phys. 2011, 134, 204114.
(27) Irving, J. H.; Kirkwood, J. G. The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 1950, 18, 817-829.
(28) Ghoufi, A.; Malfreyt, P. Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods. Phys. Rev. E 2010, 82, 016706.
(29) Jalbert, C.; Koberstein, J. T.; Yilgor, I.; Gallagher, P.; Krukonis, V. Molecular weight dependence and end-group effects on the surface tension of poly (dimethylsiloxane). Macromolecules 1993, 26, 3069-3074.
(30) Arashiro, E. Y.; Demarquette, N. R. Influence of temperature, molecular weight, and polydispersity of polystyrene on interfacial tension between low‐density polyethylene and polystyrene. J. Appl. Polym. Sci. 1999, 74, 2423-2431.
(31) Gershman, E. I., & Zhevnenko, S. N. Method of in situ measuring surface tension of a solid-gas interface. Phys. Met. Metallogr+. 2010, 110, 102-107.
(32) Wu, D. T.; Fredrickson, G. H. Effect of architecture in the surface segregation of polymer blends. Macromolecules 1996, 29, 7919-7930.
(33) Schaub, T. F.; Kellogg, G. J.; Mayes, A. M.; Kulasekere, R.; Ankner, J. F.; Kaiser, H. Surface modification via chain end segregation in polymer blends. Macromolecules 1996, 29, 3982-3990.
(34) Kano, Y.; Ishikura, K.; Kawahara, S.; Akiyama, S. Analysis of surface segregation in blends of acrylate copolymer with fluoro-copolymer. Polym. J. 1992, 24, 135-144. |