參考文獻 |
1.
Koros, W.J., Evolving beyond the thermal age of separation processes: membranes can lead the way. AIChE Journal, 2004. 50(10): p. 2326-2334.
2.
Castro-Muñoz, R., V. Martin-Gil, M.Z. Ahmad, and V. Fíla, Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art. Chemical Engineering Communications, 2018. 205(2): p. 161-196.
3.
Zhang, Y., X. Feng, S. Yuan, J. Zhou, and B. Wang, Challenges and recent advances in MOF–polymer composite membranes for gas separation. Inorganic Chemistry Frontiers, 2016. 3(7): p. 896-909.
4.
Peng, Y., Y. Li, Y. Ban, and W. Yang, Two‐Dimensional Metal–Organic Framework Nanosheets for Membrane‐Based Gas Separation. Angewandte Chemie International Edition, 2017. 56(33): p. 9757-9761.
5.
Basu, S., A. Cano-Odena, and I.F. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Separation and Purification Technology, 2011. 81(1): p. 31-40.
6.
Li, C., Z. Xiong, J. Zhang, and C. Wu, The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. Journal of Chemical & Engineering Data, 2015. 60(11): p. 3414-3422.
7.
Liu, M., P.A. Gurr, Q. Fu, P.A. Webley, and G.G. Qiao, Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018. 6(46): p. 23169-23196.
8.
Wang, B., A. Kuang, X. Luo, G. Wang, H. Yuan, and H. Chen, Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting. Applied Surface Science, 2018. 439: p. 374-379.
9.
Kamble, A.R., C.M. Patel, and Z. Murthy, Different 2D materials based polyetherimide mixed matrix membranes for CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2020. 81: p. 451-463.
10.
Alen, S.K., S. Nam, and S.A. Dastgheib, Recent Advances in Graphene Oxide Membranes for Gas Separation Applications. International journal of molecular sciences, 2019. 20(22): p. 5609.
11.
Xu, Q., H. Xu, J. Chen, Y. Lv, C. Dong, and T.S. Sreeprasad, Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorganic Chemistry Frontiers, 2015. 2(5): p. 417-424.
12.
Joshi, R., S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, Graphene oxide: the new membrane material. Applied Materials Today, 2015. 1(1): p. 1-12.
13.
Yu, M. and H. Li, Ultrathin, molecular-sieving graphene oxide membranes for separations along with their methods of formation and use. 2017, Google Patents.
14.
Li, X., L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, and B. Wang, Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015. 479: p. 1-10.
15.
Yoo, B.M., J.E. Shin, H.D. Lee, and H.B. Park, Graphene and graphene oxide membranes for gas separation applications. Current opinion in chemical engineering, 2017. 16: p. 39-47.
16.
Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the american chemical society, 1958. 80(6): p. 1339-1339.
17.
Xin, Q., Z. Li, C. Li, S. Wang, Z. Jiang, H. Wu, Y. Zhang, J. Yang, and X. Cao, Enhancing the CO 2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry A, 2015. 3(12): p. 6629-6641.
18.
Yang, T., H. Lin, K.P. Loh, and B. Jia, Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation. Chemistry of Materials, 2019. 31(6): p. 1829-1846.
19.
Sun, C., B. Wen, and B. Bai, Application of nanoporous graphene membranes in natural gas processing: Molecular simulations of CH4/CO2, CH4/H2S and CH4/N2 separation. Chemical Engineering Science, 2015. 138: p. 616-621.
20.
Wang, S., S. Dai, and D.-e. Jiang, Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Applied Nano Materials, 2018. 2(1): p. 379-384.
21.
Formhals, A., United States: Patent Application Publication. US patent, 1934. 1(975): p. 504.
22.
Shen, J., M. Zhang, G. Liu, and W. Jin, Facile tailoring of the two-dimensional graphene oxide channels for gas separation. RSC advances, 2016. 6(59): p. 54281-54285.
23.
Shieh, J.J. and T.S. Chung, Gas permeability, diffusivity, and solubility of poly (4‐vinylpyridine) film. Journal of Polymer Science Part B: Polymer Physics, 1999. 37(20): p. 2851-2861.
24.
Murugiah, P., P. Oh, and K. Lau. Concatenation of carbonaceous nanofillers for mixed matrix membrane development. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.
25.
Nigiz, F.U. and N.D. Hilmioglu, Enhanced hydrogen purification by graphene-Poly (Dimethyl siloxane) membrane. International Journal of Hydrogen Energy, 2020. 45(5): p. 3549-3557.
26.
Chen, B., C. Wan, X. Kang, M. Chen, C. Zhang, Y. Bai, and L. Dong, Enhanced CO2 separation of mixed matrix membranes with ZIF-8@ GO composites as fillers: Effect of reaction time of ZIF-8@ GO. Separation and Purification Technology, 2019. 223: p. 113-122.
27.
Yang, K., Y. Dai, W. Zheng, X. Ruan, H. Li, and G. He, ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf. Separation and Purification Technology, 2019. 214: p. 87-94.
28.
Liu, G., W. Jin, and N. Xu, Graphene-based membranes. Chemical Society Reviews, 2015. 44(15): p. 5016-5030.
29.
Ibrahim, A. and Y. Lin, Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of membrane science, 2018. 550: p. 238-245.
30.
Chi, C., X. Wang, Y. Peng, Y. Qian, Z. Hu, J. Dong, and D. Zhao, Facile preparation of graphene oxide membranes for gas separation. Chemistry of Materials, 2016. 28(9): p. 2921-2927.
31.
Kim, H.W., H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, and S. Kwon, Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013. 342(6154): p. 91-95.
32.
Zeynali, R., K. Ghasemzadeh, A.B. Sarand, F. Kheiri, and A. Basile, Performance evaluation of graphene oxide (GO) nanocomposite membrane for hydrogen separation: Effect of dip coating sol concentration. Separation and Purification Technology, 2018. 200: p. 169-176.
33.
Akhtar, F.H., M. Kumar, and K.-V. Peinemann, Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation. Journal of membrane science, 2017. 525: p. 187-194.
34.
Hahn, J., J.I. Clodt, C. Abetz, V. Filiz, and V. Abetz, Thin isoporous block copolymer membranes: it is all about the process. ACS applied materials & interfaces, 2015. 7(38): p. 21130-21137.
35.
Guan, K., J. Shen, G. Liu, J. Zhao, H. Zhou, and W. Jin, Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Separation and Purification Technology, 2017. 174: p. 126-135.
36.
Pham, V.H., T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim, J.S. Chung, and E.J. Kim, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 2010. 48(7): p. 1945-1951.
37.
Ibrahim, A.F.M. and Y.S. Lin, Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chemical Engineering Science, 2018. 190: p. 312-319.
38.
Kim, S., L. Chen, J.K. Johnson, and E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment. Journal of Membrane Science, 2007. 294(1-2): p. 147-158.
39.
Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nature materials, 2011. 10(8): p. 569-581.
40.
Sircar, S., T. Golden, and M. Rao, Activated carbon for gas separation and storage. Carbon, 1996. 34(1): p. 1-12.
41.
Compton, O.C. and S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials. small, 2010. 6(6): p. 711-723.
42.
Bai, H., C. Li, and G. Shi, Functional composite materials based on chemically converted graphene. Advanced Materials, 2011. 23(9): p. 1089-1115.
43.
Wajid, A.S., S. Das, F. Irin, H.T. Ahmed, J.L. Shelburne, D. Parviz, R.J. Fullerton, A.F. Jankowski, R.C. Hedden, and M.J. Green, Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon, 2012. 50(2): p. 526-534.
44.
Lotya, M., P.J. King, U. Khan, S. De, and J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions. ACS nano, 2010. 4(6): p. 3155-3162.
45.
Lotya, M., A. Rakovich, J.F. Donegan, and J.N. Coleman, Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology, 2013. 24(26): p. 265703.
46.
Heo, J., M. Choi, J. Chang, D. Ji, S.W. Kang, and J. Hong, Highly permeable graphene oxide/polyelectrolytes hybrid thin films for enhanced CO 2/N 2 separation performance. Scientific reports, 2017. 7(1): p. 1-8.
47.
Stobinski, L., B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, and I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena, 2014. 195: p. 145-154. |