博碩士論文 107324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.221.142.39
姓名 吳崇吉(Chong-Ji Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鏈堆積導致的彎曲模量變化對Alamethicin離子通道活性的影響
(The Effects of Chain Packing-induced Variation in Bending Modulus on the Ion Channel Activity of Alamethicin)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討
★ 脂質組成成分對細胞膜物理性質與生物功能的影響★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響
★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響
★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性★ CoCrFeMnNi 高熵合金 形變行為之探討
★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動
★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化★ 發展量測雙層脂質膜的排列密度之實驗技術
★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響★ 開發預測雙子型界面活性劑之自組裝結構的方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-17以後開放)
摘要(中) 自發曲率(spontaneous curvature)和彎曲模量(bending modulus)是生物膜的兩個主要彈性特性。兩種彈性均受到鏈堆積的影響,其中,鏈堆積會影響彎曲模量。Keller和其團隊提及,膜的自發曲率決定了由肽(阿樂美黴素)形成的離子通道的活性。然而,由鏈堆積所引起膜的彎曲模量是否以及如何影響離子通道的活性仍然未知。為了回答這個問題,我們採用了由單不飽和脂質(DOPC和DOPS)以及由多不飽和脂質(di (18:2) PC 和DOPS)構成的脂質囊泡,因為兩種囊包組成的彎曲模量不同但自發曲率不同,並且觀察當囊泡組成發生變化時,Alamethicin離子通道的活性如何被調節。我們採用動態光散射和定向圓二色性來確定囊泡的大小和阿樂美黴素在脂質膜中的方向,同時通過將鈣敏感染劑fura-2包裹在囊泡中,通過螢光光譜法測量離子通道的活性,以檢測通過通道的鈣通量。我們發現受膜影響的彎曲模量對阿樂美黴素離子通道的活性是有影響的,這可能歸因於膜中脂質分子的堆積。
摘要(英) Spontaneous curvature and bending modulus are the two major elastic properties of biological membranes. Both of elastic properties are influenced by chain packing. Among them, the chain packing would influence bending modulus. Keller and coworkers reported that the spontaneous curvature of a membrane dictated the activity of the ion channels formed by the peptide, alamethicin. However, whether and how the chain packing-induced variation in bending modulus of a membrane affects the activity of ion channels remains unknown. To answer this question, we employed the lipid vesicles made of the monounsaturated lipids, DOPC and DOPS, as well as those made of polyunsaturated lipids, di (18:2) PC and DOPS, and observed how the activity of the alamethicin ion channels is modulated when the vesicle composition changes, since the vesicles of the two compositions differ in bending modulus but not in spontaneous curvature. We employed dynamic light scattering and orientation circular dichroism to determine the vesicle size and the orientation of alamethicin within the membranes, while the activity of the ion channels was measured with fluorescence spectroscopy via enveloping the calcium-sensitive dye, fura-2, into the vesicles to detect the calcium flux passing the channels. We found that the bending modulus of a membrane affected was influential to the activity of the alamethicin ion channels, which is possibly ascribable to the packing of the lipid molecules in a membrane.
關鍵字(中) ★ 離子通道
★ 彎曲模量
★ 鏈堆積
★ Alamethicin
關鍵字(英) ★ Ion Channel Activity
★ Bending Modulus
★ Chain Packing
★ Alamethicin
論文目次 摘要 I
ABSTRACT II
致謝 III
TABLE OF CONTENTS IV
LIST OF FITURES VII
LIST OF TABLES IX
CHAPTER 1 INTRODUCTION 1
1-1 Membrane system 2
1-1-1 Cell membrane 2
1-1-2 Phospholipids 4
1-1-3 Biomimetic membrane 6
1-2 Elastic properties 7
1-2-1 Spontaneous curvature 10
1-2-2 Bending modulus 12
1-3 Antimicrobial peptides (AMPs) 14
1-3-1 Alamethicin 14
1-4 Mechanism of peptide and membrane 16
1-4-1 peptide adsorption and insertion 18
1-4-2 Ion channel 21
1-5 Motivation 21
CHAPTER 2 MATERIALS AND INSTRUMENTS 23
2-1 Materials 23
2-1-1 Phospholipid 24
2-1-2 Peptide 27
2-1-3 Fluorescence dye 30
2-1-4 General materials 31
2-2 Sample preparation 34
2-2-1 Buffer preparation 34
2-2-2 Peptide solution preparation 34
2-2-3 Unilamellar vesicle 35
2-2-4 Vesicle enveloping fluorescence dye and leakage 36
2-2-5 Supported lipid bilayer 37
2-3 Experiment instruments and methods 39
2-3-1 Small angle X-ray scattering (SAXS) 39
2-3-2 Orientation circular dichroism (OCD) 41
2-3-3 Gel filtration chromatography 45
2-3-4 Absorption fluorometer 47
2-3-5 Dynamic light scattering (DLS) 50
2-4 Data analysis 51
2-4-1 SAXS data analysis 51
2-4-2 Fluorescence dye leakage analysis 54
CHAPTER 3 RESULT 56
3-1 Particle size of vesicles 56
3-2 Orientation of peptide on different bending modulus of phospholipid 58
3-3 Influence of different bending modulus on ion channels activity. 61
3-3-1 The range of volume of elution contained Fura-2 and vesicle 61
3-3-2 The measurable method of fluorescence assay 65
3-3-3 The activity of ion channel in DOPC/DOPS and di (18:2) PC/DOPS 67
3-4 The relation between bending modulus and membrane thickness after peptide binding 69
CHAPTER 4 DISCUSSION 75
CHAPTER 5 CONCLUSION 77
REFERENCE 78
APPENDIX 83
參考文獻 [1] Marsden, H. R., et al. Model systems for membrane fusion. Chemical Society Reviews 2011, 40(3), 1572-1585.
[2] Solomon, E. P., Berg, L. R. and Martin D. W. Biology. Thomson, 2008, 114-126.
[3] Kulkarni, C. V. Lipid self-assemblies and nanostructured emulsions for cosmetic formulations. Cosmetics 2016, 3(37), 1-15.
[4] Sani, M., et al Lipid composition regulates the conformation and insertion of the antimicrobial peptide maculatin 1.1. Biochimica et Biophysica Acta (BBA)-Biomembranes 2012, 1818(2), 205-211.
[5] van Meer, G., et al Lipid map of the mammalian cell. Journal of cell science 2011, 124(1), 5-8.
[6] Kirk, G. L., et al. A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems. Biochemistry 1984, 23(6), 1093-1102.
[7] Duesing, P. M., et al Quantifying packing frustration energy in inverse lyotropic mesophases. Langmuir 1997, 13(2), 351-359.
[8] Shearman, G. C., et al. Inverse lyotropic phases of lipids and membrane curvature. Journal of Physics: Condensed Matter 2006, 18, S1105-S1124.
[9] Drazenovic, J., et al. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 2015, 1848(2), 532-543.
[10] Chen, Y. F., et al. Differential dependencies on [Ca 2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: effects of modulating the strength of the inter-headgroup repulsion. Soft Matter 2015, 11(20), 4041-4053.
[11] Rand, R. P., et al. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry 1990, 29(1), 76-87.
[12] Fuller, N., et al. Curvature and bending constants for phosphatidylserine-containing membranes. Biophysical journal 2003, 85(3), 1667-1674.
[13] Fan, Z. A., et al. Revisit the Correlation between the Elastic Mechanics and Fusion of Lipid Membranes. Scientific reports 2016, 6, 31470-31479.
[14] Brogden, K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology 2005, 3, 238–250.
[15] Perrin Jr, B. S., et al. Simulations of membrane-disrupting peptides I: alamethicin pore stability and spontaneous insertion. Biophysical journal 2016, 111(6), 1248-1257.
[16] Baumann, G. et al. A molecular model of membrane excitability. Journal of supramolecular structure 1974, 2(5‐6), 538-557.
[17] Huang, H. W. Action of antimicrobial peptides: two-state model. Biochemistry 2000, 39(29), 8347-8352.
[18] Woolley, G. A. and Wallace, B. A. Model ion channels: gramicidin and alamethicin. The Journal of membrane biology 1992, 129(2), 109-136.
[19] Hanke, W. et al. The lowest conductance state of the alamethicin pore. Biochimica et Biophysica Acta (BBA)-Biomembranes 1980, 596(3), 456-462.
[20] Bezrukov, S. M., and Vodyanoy, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 1995, 378(6555), 362-364.
[21] Seelig, Joachim. Thermodynamics of lipid–peptide interactions. Biochimica et Biophysica Acta (BBA)-Biomembranes 2004, 1666, 40-50.
[22] Sani, Marc-Antoine, et al How membrane-active peptides get into lipid membranes. Accounts of chemical research 2016, 49(6), 1130-1138.
[23] Travkova, O. G., et al The interaction of antimicrobial peptides with membranes. Advances in colloid and interface science 2017, 247, 521-532.
[24] He, K., et al. Mechanism of alamethicin insertion into lipid bilayers. Biophysical journal 1996, 71(5), 2669-2679.
[25] Yang, Lin, et al. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical journal 2001, 81(3), 1475-1485.
[26] Ashcroft, F. M. Ion Channels and Disease. Academic Press 2000, 21-30
[27] Aguilella, V. M. and Bezrukov, S. M. Alamethicin channel conductance modified by lipid charge. European Biophysics Journal 2001, 30(4), 233-241.
[28] Keller, S. L., et al. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophysical journal 1993, 65(1), 23-27.
[29] Williamson, J. D., et al. Use of a new buffer in the culture of animal cells. Journal of General Virology 1968, 2(2), 309-312.
[30] Scott, H. L., et al. On the mechanism of bilayer separation by extrusion, or why your LUVs are not really unilamellar. Biophysical journal 2019, 117(8), 1381-1386.
[31] Chen, F. Y., et al. Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Biophysical journal 2002, 82(2), 908-914.
[32] Ludtke, S., et al. Membrane thinning caused by magainin 2. Biochemistry, 1995, 34(51), 16764-16769.
[33] Harroun, T. A., et al. Neutron and X-ray scattering for biophysics and biotechnology: examples of self-assembled lipid systems. Soft Matter 2009, 5(14), 2694-2703.
[34] Als-Nielsen, J. and McMorrow D. Elements of modern X-ray physics. John Wiley & Sons, 2011, 10-14.
[35] Pabst, G., et al. Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography 2003, 36(6), 1378-1388.
[36] Bürck, J., et al. Oriented circular dichroism: a method to characterize membrane-active peptides in oriented lipid bilayers. Accounts of chemical research 2016, 49(2), 184-192.
[37] Volles, M. J., et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson′s disease. Biochemistry 2001, 40(26), 7812-7819.
[38] Braithwaite A. and Smith, F. J. Chromatographc Methods. Chapman and Hall 1996, 141-155.
[39] Aguilella, V. M. and Bezrukov, S. M. Alamethicin channel conductance modified by lipid charge. European Biophysics Journal 2001, 30(4), 233-241.
[40] Grynkiewicz, G., et al. A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of biological chemistry 1985, 260(6), 3440-3450.
[41] Ahmad, M. H., et al. Fluorescence spectroscopy for the monitoring of food processes. Measurement, Modeling and Automation in Advanced Food Processing 2017, 121-151.
[42] Pecora, R. Dynamic light scattering measurement of nanometer particles in liquids. Journal of nanoparticle research 2000, 2(2), 123-131.
[43] Khattari, Z., et al. Stalk formation as a function of lipid composition studied by X-ray reflectivity. Biochimica et Biophysica Acta (BBA)-Biomembranes 2015, 1848(1), 41-50.
[44] Pabst, G., et al. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Physical Review E 2000, 62(3), 4000-4009.
[45] Danaei, M., et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10(2), 57-74.
[46] He, Ke, et al. Mechanism of alamethicin insertion into lipid bilayers. Biophysical journal 1996, 71, (5), 2669-2679.
[47] Rawicz, W., et al. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical journal 2000, 79(1), 328-339.
[48] Lund-Katz, S., et al. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry 1988, 27(9), 3416-3423.
[49] Ishitsuka, Yuji, et al. Insertion selectivity of antimicrobial peptide protegrin-1 into lipid monolayers: effect of head group electrostatics and tail group packing. Biochimica et Biophysica Acta (BBA)-Biomembranes 2006, 1758(9), 1450-1460
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明