博碩士論文 107324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.22.242.110
姓名 倪聖皓(Sheng-Hao Ni)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以模擬設計開發濕法回收氧化鎵中樹脂吸脫附鎵離子之商業化程序
相關論文
★ 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究★ 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究
★ 改善三塔真空變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著5G通訊以及半導體產業的蓬勃發展,鎵金屬的需求日益漸增,也因此產生許多含氮化鎵之電子廢棄物,由於國內尚未有回收鎵金屬之成熟技術,且缺乏鎵資源,本模擬研究探討如何從含鎵電解液中回收鎵,並達到商業化之規模。
本研究以萃取劑改質樹脂(D2EHPA/XAD-4)從含鎵電解液中進行離子交換以回收鎵。模擬採用Aspen Plus之Chromatography模組進行研究開發,以extended Langmuir isotherm描述其等溫平衡吸附曲線,再以固相Linear lumped resistance質傳阻力模型描述其吸附質傳阻力。因等溫平衡吸附實驗與連續管柱實驗之操作方式不同,會影響其吸附效率,所以需要用吸附量修正因子(fads)修正兩種實驗之吸附量差異。再以模擬分別驗證純鎵離子溶液、純鋁離子溶液、純鎵離子加純鋁離子混合溶液、及實際浸漬廢料稀釋溶液實驗數據,求得符合程度最佳之各離子吸脫附質傳係數(MTC)與吸附量修正因子(fads),以確認程式及參數的可靠度。
利用實驗設計分析探討當進料濃度為300 ppm Ga以及30 ppm Al時,填充樹脂高度、塔徑、吸附時間、脫附時間、吸附流量與脫附流量對鎵回收率、出口鎵濃度以及鋁對鎵重量比之影響,研究最適化以及符合商業化規模之操作條件,以回收較多之鎵金屬。變因探討後之最適化操作條件為填充樹脂高度78.69 cm、塔徑9.98 cm、吸附時間90.61 min、脫附時間341.62 min、吸附流量0.058 L/min、脫附流量0.058 L/min,樹脂重量為3060 g。此操作條件下可得鎵回收率89.97%、出口鎵濃度71.53 mg/L以及鋁對鎵重量比7.94%。最後,以上述之最適化操作條件模擬一根管柱每天可處理之鎵進料量,並以我國一年之鎵廢料相比較,計算出大約需要6根管柱,共18.36公斤之樹脂即可處理一年所產出之鎵廢料量。
摘要(英) With the advance of semi-conductor industry and 5G communication, the demand for gallium metal is increasing, and a great amount of industrial waste material, such as scraped GaN-containing wafer, has been produced. Due to the shortage of Ga resources and the current lack of ability to recycle Ga metal in Taiwan, a commercial Ga recycling process had been developed in this simulation study.
In this work, extractant-modified resin (D2EHPA/XAD-4) had been used to recycle Ga ions from the electrolyte which containing Ga ions. The Chromatography module of Aspen Plus software was adopted in this research. The isothermal adsorption curve was fitted by extended Langmuir isotherm model while adsorption mass transfer resistance was modeled by Linear Lumped Resistance model. Due to the difference of operating method between isothermal adsorption experiments and ion exchange experiments which may affect the adsorption efficiency, the adsorption correction factor (fads) was estimated by the adsorption capacity difference between two experiments. The simulation of ion exchange experiments of pure Ga3+ solution, pure Al3+ solution, mixture of Ga3+ and Al3+ solution, and real waste dilute solution have been developed and fitted to the experimental data. The mass transfer coefficient and adsorption correction factor could be found by fitting the ion exchange experiments. In order to obtain the higher recovery of Ga, higher concentration of Ga, and lower Al to Ga weight ratio, several variables were discussed to find the best operating conditions in the commercial process. The finial operating conditions are: height of resin layer 78.69 cm, bed diameter 9.98 cm, adsorption time 90.61 min, desorption time 341.62 min, adsorption flow rate 0.058 L/min, and desorption flow rate 0.058 L/min. The simulation results are 89.97% recovery of Ga, 71.53 mg/L concentration of Ga, 7.94% Al to Ga weight ratio, and using 3060 g resin. Finally, we need about 6 beds to process the scraped GaN-containing wafer produced per year in Taiwan.
關鍵字(中) ★ 鎵離子
★ 分離程序
★ 改質樹脂
★ Aspen Chromatography
★ 實驗設計
關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xv
第一章、緒論 1
第二章、簡介及文獻回顧 3
2-1 離子交換之簡介 3
2-1-1 離子交換基本原理 3
2-1-2 離子交換樹脂組成與結構 4
2-1-3 離子交換樹脂分類 7
2-1-4 離子交換平衡 16
2-2離子交換樹脂循環操作程序 20
2-3 文獻回顧 26
2-3-1 利用離子交換樹脂吸附鎵之相關研究 26
2-3-2 ASPEN應用於離子交換反應之相關研究 29
第三章、理論 32
3-1 離子交換之動力學模式 32
3-1-1 大孔型離子交換樹脂的顆粒內擴散 34
3-1-2 溶液中離子濃度影響離子交換樹脂的顆粒內擴散 37
3-1-3動力學模式 38
3-2 液體的軸向分散係數 40
3-3吸附現象 44
3-3-1 物理吸附與化學吸附 44
3-3-2 等溫平衡吸附模式 45
第四章、ASPEN模擬程式設定與製程描述 51
4-1 流程架構 51
4-2 進料物質設定 54
4-3 離子交換管柱設定 59
4-3-1 離子交換管柱模式設定 60
4-3-2 離子交換管柱參數設定 64
4-4 循環設定 67
第五章、結果討論與數據分析 68
5-1 等溫平衡吸附曲線 68
5-2 吸附動力學 71
5-3 離子交換連續管柱實驗與模擬結果驗證 73
5-3-1 純鎵離子溶液之管柱實驗之模擬結果驗證 73
5-3-2 純鋁離子溶液之管柱實驗之模擬結果驗證 76
5-3-3 純鎵離子加純鋁離子混合溶液之管柱實驗之模擬結果驗證 79
5-3-4 實際浸漬廢料稀釋溶液之管柱實驗之模擬結果驗證 83
5-4實驗室規模之離子交換程序之實驗設計 87
5-4-1 反應曲面法 89
5-4-2 最適化結果 92
5-5商業化規模之離子交換程序之實驗設計 94
5-5-1 殘差分析圖 95
5-5-2 迴歸分析 98
5-5-3 最適化結果 100
5-5-4 純化經電解後之含鎵電解液之商業化程序 102
第六章、結論 105
符號說明 107
參考文獻 111
附錄A、離子交換循環操作程序之穩態過程 116
附錄B、離子交換連續管柱實驗詳細數據 118
附錄C、各實驗設計之反應值 128
附錄D、迴歸模型之無因次化係數 133
參考文獻 [1] U. S. Geological Survey, "Mineral Commodity Summaries 2019," Reston, VA, 2019.
[2] B. A. Adams and E. L. Holmes, "Absorptive Properties of Synthetic Resins," Journal of the Society of Chemical Industry, vol. 54, pp. 1-6, 1935.
[3] S. Woodard, J. Berry, and B. Newman, "Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC," Remediation Journal, vol. 27, pp. 19-27, 2017.
[4] 離子交換樹脂事業部,<三菱化學控股集團>,網址: https://www.m-chemical.co.jp/cn/products/departments/mcc/ion/index.html.
[5] 楊岳軍,〈離子交換樹脂在重金屬廢水處理之應用〉,重金屬廢水處理技術研討會,工研院化工所,新竹,1989.
[6] T. D. Reynolds and P. Richards, Unit Operation and Processes in Environmental Engineering, Boston: Cengage Learning, 1996.
[7] F. G. Helfferich, Ion Exchange, New York: McGraw-Hill, 1962.
[8] W. J. Weber, Physicochemical Processes for Water Quality Control, New York: Wiley Interscience, 1972.
[9] S. M. Al-Jubouri and S. M. Holmes, "Hierarchically Porous Zeolite X Composites for Manganese Ion-Exchange and Solidification: Equilibrium Isotherms, Kinetic and Thermodynamic Studies," Chemical Engineering Journal, vol. 308, pp. 476-491, 2017.
[10] F. D. Dardel and T. V. Arden, Ion Exchangers, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
[11] J. M. Smith, Chemical Engineering Kinetics, 3rd ed., New York: McGraw-Hill, 1981.
[12] 黃富昌、陳慶和、王宇傑、鄧民有、孫常榮、邱英嘉,《環工單元操作實習》,台北 : 文京出版, 1999.
[13] V. C. Taty-Costodes, H. Fauduet, C. Porte, and Y. S. Ho, "Removal of Lead (II) Ions from Synthetic and Real Effluents Using Immobilized Pinus Sylvestris Sawdust: Adsorption on a Fixed-Bed Column," Journal of Hazardous Materials, vol. 123, pp. 135-144, 2005.
[14] T. H. Cheng, C. J. Liu, T. Y. Tsai, "A Process for the Recovery of Gallium from Gallium Arsenide Scrap," Processes, vol. 7(12), [921], 2019.
[15] Z. Zhao, X. H. Li, Y. Q. Chai, Z. S. Hua, Y. P. Xiao, and Y. X. Yang, ′′Adsorption Performances and Mechanisms of Amidoxime Resin toward Gallium(III) and Vanadium(V) from Bayer Liquor," ACS Sustainable Chemistry & Engineering, pp. 53-59, 2015.
[16] M. Nakayama and H. Egawa, ′′Recovery of Gallium(III) from Strongly Alkaline Media Using a Kelex-100-Loaded Ion-Exchange Resin,′′ Industrial & Engineering Chemistry Research, pp. 4365-4368, 10 1997.
[17] M. M. Hassanien, I. M. Kenawy, A. M. El-Menshawy, A. A. El-Asmy, ′′Separation and Preconcentration of Gallium(III), Indium(III), and Thallium(III) Using New Hydrazone-Modified Resin,′′ Analytical Sciences, pp. 1403-1408, 2007.
[18] J. Yang, X. Zhao, and Y. Z. Yang, ′′Separation of Gallium and Aluminum from HCl Solution by Microemulsion,′′ Separation Science and Technology, pp. 1936-1940, 2011.
[19] M. S. Lee, J. G. Ahn, and E. C. Lee, ′′Solvent Extraction Separation of Indium and Gallium from Sulphate Solutions Using D2EHPA,′′ Hydrometallurgy, pp. 269-276, 2002.
[20] S. P. Li, W. F. Wu, H. Q. Li, and X. J. Hou, ′′The Direct Adsorption of Low Concentration Gallium from Fly Ash,′′ Separation Science and Technology, pp. 1-8, 2015.
[21] K. S. Rao, G. R. Chaudhury, P. G. Krishna, S. C. Das, and V. N. Misra, ′′Recovery of Gallium from Bayer Liquor using Ion Exchange Technique - A Case Study,′′ Mining, Metallurgy & Exploration, pp. 22-26, 2006.
[22] E. C. Cren and A. J. A. Meirelles, "Oleic Acid Removal from Ethanolic Solutions by Ion Exchange," Chemical Engineering Journal, vol. 184, pp. 125-131, 2012.
[23] A. Venkatesan and P. C. Wankat, "Simulation of Ion Exchange Water Softening Pretreatment for Reverse Osmosis Desalination of Brackish Water," Desalination, vol. 271, pp. 122-132, 2011.
[24] A. K. SenGupta, Ion Exchange in Environmental Processes:Fundamentals, Applications and Sustainable Technology, Hoboken: John Wiley & Sons, 2017.
[25] P. Li and A. K. SenGupta, "Intraparticle Diffusion during Selective Sorption of Trace Contaminants: The Effect of Gel versus Macroporous Morphology," Environmental Science and Technology, vol. 34, pp. 5193-5200, 2000.
[26] C. Wilke and P. Chang, "Correlation of Diffusion Coefficients in Dilute Solutions," AIChE Journal, vol. 1, pp. 264-270, 1955.
[27] H. Y. Chou, L. S. Wu, L. Z. Zeng, and A. Chang, "Evaluation of Solute Diffusion Tortuosity Factor Models for Variously Saturated Soils," Water Resources Research, vol. 48:W10539, 2012.
[28] Aspen Technology, Aspen Chromatography user help file, version 10, 2017.
[29] C. Y. Wen and Y. H. Yu, "Mechanics of Fluidization," Chemical Engineering Progress Symposium Series, vol. 62, pp. 100-111, 1966.
[30] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, New York: Marcel Dekker, Inc., 1975.
[31] E. J. Cairns and J. M. Prausnitz, "Longitudinal Mixing in Packed Beds," Chemical Engineering Science, vol. 12, pp. 20-34, 1960.
[32] H. Freundlich, "Über Die Adsorption in lösungen," Zeitschrift für physikalische Chemie, vol. 57, pp. 385-471, 1907.
[33] I. Langmuir, "The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum," Journal of the American Chemical Society, vol. 40, pp. 1361-1403, 1918.
[34] S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers," Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938.
[35] Y. Glocheux, M. M. Pasarin, A. B. Albadarin, S. J. Allen, and G. M. Walker, "Removal of Arsenic from Groundwater by Adsorption onto an Acidified Laterite By-Product," Chemical Engineering Journal, vol. 228, pp. 565-574, 2013.
[36] N. Z. Misak, "Langmuir Isotherm and its Application in Ion-Exchange Reactions," Reactive Polymers, vol. 21, pp. 53-64, 1993.
[37] A. R. Khan, R. Ataullah, and A. Al-Haddad, "Equilibrium Adsorption Studies of some Aromatic Pollutants from Dilute Aqueous Solutions on Activated Carbon at Different Temperatures," Journal of Colloid and Interface Science, vol. 194, pp. 154-165, 1997.
[38] M. E. Mesquita, J. M. Vieira e Silva, "Preliminary Study of pH Effect in the Application of Langmuir and Freundlich Isotherms to Cu–Zn Competitive Adsorption," Geoderma, vol. 106, pp. 219-234, 2002.
[39] S. Al-Asheh, F. Banat, R. Al-Omari, and Z. Duvnjak, "Predictions of Binary Sorption Isotherms for the Sorption of Heavy Metals by Pine Bark Using Single Isotherm Data," Chemosphere, vol. 41, pp. 659-665, 2000.
[40] C. Tien, Adsorption Calculations and Modelling, Boston: Butterworth-Heinema, pp. 46-47,1994.
[41] Aspen Technology, Aspen plus user guide, version 10.2, 2000.
[42] T. Nakamura, A. Sakai, S. Nishihama, and K. Yoshizuka, "Solvent Extraction of Indium, Gallium, and Zinc Ions with Acidic Organophosphates Having Bulky Alkyl Groups," Solvent Extraction and Ion Exchange, vol. 27, pp. 501-512, 2009.
[43] R. H. Perry and D. W. Green, Perry′s Chemical Engineers′ HanDbook, 6th ed., New York: McGraw-Hill, 1985.
[44] E. Nishikata, T. Ishii, and T. Ohta, "Viscosities of Aqueous Hydrochloric Acid Solutions, and Densities and Viscosities of Aqueous Hydroiodic Acid Solutions," Journal of Chemical & Engineering, vol. 26, pp. 254-256, 1981.
[45] D. Duong, Adsorption Analysis: Equilibria and Kinetics, London: Imperial College Press, 1998.
[46] R. B. Bird, W. E. Steward, and E. N. Lightfoot, Transport Phenomena, 2nd ed., New York: Wiley, 2007.
[47] D. C. Montgomery, Design and Analysis of Experiments, 7th ed., John Wiley & Sons Ltd, pp. 417-485, 2009.
[48] K. Kamatani, "Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution," Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[49] Gallium metal, 99.9% (metals basis),<Alfa Aesar>,網址: https://www.alfa.com/zh-cn/catalog/045841/
[50] Gallium ingot, 99.99% (metals basis),<Alfa Aesar>,網址: https://www.alfa.com/zh-cn/catalog/045841/
指導教授 周正堂 楊閎舜 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明