參考文獻 |
[1] H. Hirayama, Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes, Journal of Applied Physics, 97 (2005) 7.
[2] M. Kneissl, J. Rass, III-Nitride ultraviolet emitters, Springer2016.
[3] R. Miyagawa, S. Yang, H. Miyake, K. Hiramatsu, T. Kuwahara, M. Mitsuhara, N. Kuwano, Microstructure of AlN grown on a nucleation layer on a sapphire substrate, Applied Physics Express, 5 (2012) 025501.
[4] C.-P. Huang, C.-H. Wang, C.-P. Liu, K.-Y. Lai, High-quality AlN grown with a single substrate temperature below 1200 C, Scientific reports, 7 (2017) 7135.
[5] C.-Y. Huang, P.-Y. Wu, K.-S. Chang, Y.-H. Lin, W.-C. Peng, Y.-Y. Chang, J.-P. Li, H.-W. Yen, Y.S. Wu, H. Miyake, High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes, AIP Advances, 7 (2017) 055110.
[6] J. Wang, F. Xu, C. He, L. Zhang, L. Lu, X. Wang, Z. Qin, B. Shen, High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition, Scientific Reports, 7 (2017) 42747.
[7] M. Funato, M. Shibaoka, Y. Kawakami, Heteroepitaxy mechanisms of AlN on nitridated c-and a-plane sapphire substrates, Journal of Applied Physics, 121 (2017) 085304.
[8] Y. Taniyasu, M. Kasu, T. Makimoto, Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0 0 0 1) substrate, Journal of crystal growth, 298 (2007) 310-315.
[9] Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U. Mishra, S. Denbaars, S. Nakamura, High quality AlN grown on SiC by metal organic chemical vapor deposition, Applied Physics Letters, 93 (2008) 191906.
[10] X. Chen, C. Jia, Y. Chen, H. Wang, W. Zhang, Epitaxial growth and optical properties of Al-and N-polar AlN films by laser molecular beam epitaxy, Journal of Physics D: Applied Physics, 47 (2014) 125303.
[11] F. Brunner, H. Protzmann, M. Heuken, A. Knauer, M. Weyers, M. Kneissl, High‐temperature growth of AlN in a production scale 11× 2′ MOVPE reactor, physica status solidi c, 5 (2008) 1799-1801.
[12] O. Reentilä, F. Brunner, A. Knauer, A. Mogilatenko, W. Neumann, H. Protzmann, M. Heuken, M. Kneissl, M. Weyers, G. Tränkle, Effect of the AIN nucleation layer growth on AlN material quality, Journal of Crystal Growth, 310 (2008) 4932-4934.
[13] V. Kueller, A. Knauer, F. Brunner, A. Mogilatenko, M. Kneissl, M. Weyers, Investigation of inversion domain formation in AlN grown on sapphire by MOVPE, physica status solidi c, 9 (2012) 496-498.
[14] A.M. Soomro, C. Wu, N. Lin, T. Zheng, H. Wang, H. Chen, J. Li, S. Li, D. Cai, J. Kang, Modified pulse growth and misfit strain release of an AlN heteroepilayer with a Mg–Si codoping pair by MOCVD, Journal of Physics D: Applied Physics, 49 (2016) 115110.
[15] M. Imura, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, Annihilation mechanism of threading dislocations in AlN grown by growth form modification method using V/III ratio, Journal of crystal growth, 300 (2007) 136-140.
[16] N. Okada, N. Kato, S. Sato, T. Sumii, T. Nagai, N. Fujimoto, M. Imura, K. Balakrishnan, M. Iwaya, S. Kamiyama, Growth of high-quality and crack free AlN layers on sapphire substrate by multi-growth mode modification, Journal of crystal growth, 298 (2007) 349-353.
[17] Q. Paduano, D. Weyburne, Two-step process for the metalorganic chemical vapor deposition growth of high quality AlN films on sapphire, Japanese journal of applied physics, 42 (2003) 1590.
[18] A. Bardhan, Integration of AlGaN with (111) Si Substrate by MOCVD, 2019.
[19] D.A. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, C. Burrus, Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect, Physical Review Letters, 53 (1984) 2173.
[20] J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures, Science, 327 (2010) 60-64.
[21] S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors, Nature materials, 5 (2006) 810-816.
[22] S.Y. Karpov, Y.N. Makarov, Dislocation effect on light emission efficiency in gallium nitride, Applied Physics Letters, 81 (2002) 4721-4723.
[23] M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, Advances in group III-nitride-based deep UV light-emitting diode technology, Semiconductor Science and Technology, 26 (2010) 014036.
[24] C. Reich, M. Feneberg, V. Kueller, A. Knauer, T. Wernicke, J. Schlegel, M. Frentrup, R. Goldhahn, M. Weyers, M. Kneissl, Excitonic recombination in epitaxial lateral overgrown AlN on sapphire, Applied Physics Letters, 103 (2013) 212108.
[25] V. Kueller, A. Knauer, F. Brunner, U. Zeimer, H. Rodriguez, M. Kneissl, M. Weyers, Growth of AlGaN and AlN on patterned AlN/sapphire templates, Journal of crystal growth, 315 (2011) 200-203.
[26] V. Kueller, A. Knauer, U. Zeimer, M. Kneissl, M. Weyers, Controlled coalescence of MOVPE grown AlN during lateral overgrowth, Journal of crystal growth, 368 (2013) 83-86.
[27] U. Zeimer, V. Kueller, A. Knauer, A. Mogilatenko, M. Weyers, M. Kneissl, High quality AlGaN grown on ELO AlN/sapphire templates, Journal of crystal growth, 377 (2013) 32-36.
[28] M. Martens, F. Mehnke, C. Kuhn, C. Reich, V. Kueller, A. Knauer, C. Netzel, C. Hartmann, J. Wollweber, J. Rass, Performance characteristics of UV-C AlGaN-based lasers grown on sapphire and bulk AlN substrates, IEEE Photonics Technology Letters, 26 (2013) 342-345.
[29] P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates, Applied Physics Letters, 102 (2013) 241113.
[30] M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates, Applied physics express, 4 (2011) 092102.
[31] J. Rass, T. Kolbe, N. Lobo-Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, A. Mogilatenko, High-power UV-B LEDs with long lifetime, Gallium Nitride Materials and Devices X, International Society for Optics and Photonics, 2015, pp. 93631K.
[32] H. Hirayama, N. Noguchi, S. Fujikawa, J. Norimatsu, N. Kamata, T. Takano, K. Tsubaki, 222-282 nm AlGaN and InAlGaN based deep-UV LEDs fabricated on high-quality AlN template, Gallium Nitride Materials and Devices IV, International Society for Optics and Photonics, 2009, pp. 721621.
[33] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Applied Physics Letters, 48 (1986) 353-355.
[34] I. Petrov, E. Mojab, R. Powell, J. Greene, L. Hultman, J.E. Sundgren, Synthesis of metastable epitaxial zinc‐blende‐structure AlN by solid‐state reaction, Applied physics letters, 60 (1992) 2491-2493.
[35] D. Holec, F. Rovere, P.H. Mayrhofer, P.B. Barna, Pressure-dependent stability of cubic and wurtzite phases within the TiN–AlN and CrN–AlN systems, Scripta Materialia, 62 (2010) 349-352.
[36] H. Morkoç, Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth, John Wiley & Sons2009.
[37] C. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos, M. Razeghi, A crystallographic model of (00⋅ 1) aluminum nitride epitaxial thin film growth on (00⋅ 1) sapphire substrate, Journal of applied physics, 75 (1994) 3964-3967.
[38] F. Ponce, J. Major Jr, W. Plano, D. Welch, Crystalline structure of AlGaN epitaxy on sapphire using AlN buffer layers, Applied physics letters, 65 (1994) 2302-2304.
[39] X. Rong, X. Wang, G. Chen, J. Pan, P. Wang, H. Liu, F. Xu, P. Tan, B. Shen, Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy, Superlattices and Microstructures, 93 (2016) 27-31.
[40] L. Zhao, K. Yang, Y. Ai, L. Zhang, X. Niu, H. Lv, Y. Zhang, Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing, Journal of Materials Science: Materials in Electronics, 29 (2018) 13766-13773.
[41] M. Sopanen, Thermal Annealing of AlN Thin Films Fabricated by Plasma-Enhanced Atomic Layer Deposition for GaN Epitaxy, Aalto University, 2010.
[42] S. Raghavan, J.M. Redwing, Intrinsic stresses in AlN layers grown by metal organic chemical vapor deposition on (0001) sapphire and (111) Si substrates, Journal of applied physics, 96 (2004) 2995-3003.
[43] B.W. Sheldon, A. Rajamani, A. Bhandari, E. Chason, S. Hong, R. Beresford, Competition between tensile and compressive stress mechanisms during Volmer-Weber growth of aluminum nitride films, Journal of applied physics, 98 (2005) 043509.
[44] S. Raghavan, X. Weng, E. Dickey, J.M. Redwing, Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si, Applied Physics Letters, 87 (2005) 142101.
[45] J.E. Ayers, T. Kujofsa, P. Rago, J. Raphael, Heteroepitaxy of semiconductors: theory, growth, and characterization, CRC press2016.
[46] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire, Applied Physics Letters, 91 (2007) 071901.
[47] Y. Hayashi, R.G. Banal, M. Funato, Y. Kawakami, Heteroepitaxy between wurtzite and corundum materials, Journal of Applied Physics, 113 (2013) 183523.
[48] R.G. Banal, M. Funato, Y. Kawakami, Initial nucleation of AlN grown directly on sapphire substrates by metal-organic vapor phase epitaxy, Applied Physics Letters, 92 (2008) 241905.
[49] Q. Paduano, D. Weyburne, J. Jasinski, Z. Liliental-Weber, Effect of initial process conditions on the structural properties of AlN films, Journal of crystal growth, 261 (2004) 259-265.
[50] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano, S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Japanese journal of applied physics, 37 (1998) L398.
[51] T. Warren Weeks Jr, M.D. Bremser, K.S. Ailey, E. Carlson, W.G. Perry, R.F. Davis, GaN thin films deposited via organometallic vapor phase epitaxy on α (6H)–SiC (0001) using high‐temperature monocrystalline AlN buffer layers, Applied physics letters, 67 (1995) 401-403.
[52] Y.-M. Le Vaillant, S. Ciur, A. Andenet, O. Briot, B. Gil, R. Aulombard, R. Bisaro, J. Olivier, O. Durand, J.-Y. Duboz, Dependence of the Residual Strain in GaN on the AlN Buffer Layer Annealing Parameters, MRS Online Proceedings Library Archive, 468 (1997).
[53] Z. Fan, N. Newman, Experimental determination of the rates of decomposition and cation desorption from AlN surfaces, Materials Science and Engineering: B, 87 (2001) 244-248.
[54] Y. Kumagai, K. Akiyama, R. Togashi, H. Murakami, M. Takeuchi, T. Kinoshita, K. Takada, Y. Aoyagi, A. Koukitu, Polarity dependence of AlN {0 0 0 1} decomposition in flowing H2, Journal of crystal growth, 305 (2007) 366-371.
[55] R.A. Youngman, J.H. Harris, Luminescence studies of oxygen‐related defects in Aluminum nitride, Journal of the American Ceramic Society, 73 (1990) 3238-3246.
[56] G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas Jr, Some effects of oxygen impurities on AlN and GaN, Journal of Crystal Growth, 246 (2002) 287-298.
[57] C. Kittel, Introduction to Solid State Physics, 6th edn., translated by Y, Uno, N. Tsuya, A. Morita and J. Yamashita,(Maruzen, Tokyo, 1986) pp, (1986) 124-129.
[58] M. Bickermann, B. Epelbaum, A. Winnacker, Characterization of bulk AlN with low oxygen content, Journal of crystal growth, 269 (2004) 432-442.
[59] D. Storm, T. McConkie, D. Katzer, B. Downey, M. Hardy, D. Meyer, D.J. Smith, Effect of interfacial oxygen on the microstructure of MBE-grown homoepitaxial N-polar GaN, Journal of crystal growth, 409 (2015) 14-17.
[60] G.A. Slack, Nonmetallic crystals with high thermal conductivity, Journal of Physics and Chemistry of Solids, 34 (1973) 321-335.
[61] T. Yagi, N. Oka, T. Okabe, N. Taketoshi, T. Baba, Y. Shigesato, Effect of oxygen impurities on thermal diffusivity of AlN thin films deposited by reactive RF magnetron sputtering, Japanese Journal of Applied Physics, 50 (2011) 11RB01.
[62] J.-M. Wagner, F. Bechstedt, Properties of strained wurtzite GaN and AlN: Ab initio studies, Physical Review B, 66 (2002) 115202.
[63] E. Orowan, Fracture and strength of solids, Reports on progress in physics, 12 (1949) 185.
[64] D. Holec, P.H. Mayrhofer, Surface energies of AlN allotropes from first principles, Scripta materialia, 67 (2012) 760-762.
[65] D. Nilsson, E. Janzén, A. Kakanakova-Georgieva, Lattice parameters of AlN bulk, homoepitaxial and heteroepitaxial material, Journal of Physics D: Applied Physics, 49 (2016) 175108.
[66] S. Figge, H. Kröncke, D. Hommel, B.M. Epelbaum, Temperature dependence of the thermal expansion of AlN, Applied Physics Letters, 94 (2009) 101915.
[67] W. Yim, R. Paff, Thermal expansion of AlN, sapphire, and silicon, Journal of Applied Physics, 45 (1974) 1456-1457.
[68] T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, J. Speck, The role of high-temperature island coalescence in the development of stresses in GaN films, Applied Physics Letters, 78 (2001) 1976-1978.
[69] M. Moram, M. Vickers, X-ray diffraction of III-nitrides, Reports on progress in physics, 72 (2009) 036502.
[70] R. Chierchia, T. Böttcher, H. Heinke, S. Einfeldt, S. Figge, D. Hommel, Microstructure of heteroepitaxial GaN revealed by x-ray diffraction, Journal of Applied physics, 93 (2003) 8918-8925.
[71] R. Togashi, Y. Kisanuki, K. Goto, H. Murakami, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Y. Kumagai, Thermal and chemical stabilities of group-III sesquioxides in a flow of either N2 or H2, Japanese Journal of Applied Physics, 55 (2016) 1202BE.
[72] K. Nomura, S. Hanagata, A. Kunisaki, R. Togashi, H. Murakami, Y. Kumagai, A. Koukitu, High-Temperature Heat-Treatment of c-, a-, r-, and m-Plane Sapphire Substrates in Mixed Gases of H2 and N2, Japanese Journal of Applied Physics, 52 (2013) 08JB10.
[73] O. Ambacher, M. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. Fischer, A. Miehr, A. Bergmaier, G. Dollinger, Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 14 (1996) 3532-3542.
[74] C. Hartmann, A. Dittmar, J. Wollweber, M. Bickermann, Bulk AlN growth by physical vapour transport, Semiconductor Science and Technology, 29 (2014) 084002.
[75] L. Jian-Qi, Q. Yong-Xin, W. Jian-Feng, X. Ke, Y. Hui, Analysis of modified Williamson-Hall plots on GaN layers, Chinese Physics Letters, 28 (2011) 016101.
[76] V. Srikant, J. Speck, D. Clarke, Mosaic structure in epitaxial thin films having large lattice mismatch, Journal of applied physics, 82 (1997) 4286-4295.
[77] Z. Chen, K. Xu, L. Guo, Z. Yang, Y. Su, X. Yang, Y. Pan, B. Shen, H. Zhang, G. Zhang, Effect of long anneals on the densities of threading dislocations in GaN films grown by metal-organic chemical vapor deposition, Journal of crystal growth, 294 (2006) 156-161.
[78] Q.-J. Xu, B. Liu, S.-Y. Zhang, T. Tao, Z.-L. Xie, X.-Q. Xiu, D.-J. Chen, P. Chen, P. Han, R. Zhang, Structural characterization of Al0. 55Ga0. 45N epitaxial layer determined by high resolution x-ray diffraction and transmission electron microscopy, Chinese Physics B, 26 (2017) 047801.
[79] L. Meng, W. Guohong, L. Hongjian, L. Zhicong, Y. Ran, W. Bing, L. Panpan, L. Jing, Y. Xiaoyan, W. Junxi, Low threading dislocation density in GaN films grown on patterned sapphire substrates, Journal of Semiconductors, 33 (2012) 113002.
[80] A.H. White, W. Melville, THE DECOMPOSITION OF AMMONIA AT HIGH TEMPERATURES, Journal of the American Chemical Society, 27 (1905) 373-386.
[81] V.S. Ban, Mass Spectrometric Studies of Vapor‐Phase Crystal Growth: II, Journal of the Electrochemical Society, 119 (1972) 761.
[82] L. Rosenberger, R. Baird, E. McCullen, G. Auner, G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 40 (2008) 1254-1261.
[83] P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition, Applied Surface Science, 315 (2014) 104-109.
[84] S.K. Sharma, X-ray spectroscopy, BoD–Books on Demand2012.
[85] T. Mattila, R.M. Nieminen, Ab initio study of oxygen point defects in GaAs, GaN, and AlN, Physical Review B, 54 (1996) 16676.
[86] R. Shekhar, K.F. Jensen, Temperature programmed desorption investigations of hydrogen and ammonia reactions on GaN, Surface science, 381 (1997) L581-L588.
[87] B.E. Deal, A. Grove, General relationship for the thermal oxidation of silicon, Journal of applied physics, 36 (1965) 3770-3778.
[88] T. Hashimoto, Y. Terakoshi, M. Yuri, M. Ishida, O. Imafuji, T. Sugino, K. Itoh, Quantitative study of nitridated sapphire surfaces by x-ray photoelectron spectroscopy, Journal of applied physics, 86 (1999) 3670-3675.
[89] F. Dwikusuma, T.F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism, Journal of applied physics, 94 (2003) 5656-5664.
[90] C. Powell, Energy and material dependence of the inelastic mean free path of low‐energy electrons in solids, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3 (1985) 1338-1342.
[91] J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, 8 (1976) 129-137.
[92] T. Matsuoka, Y. Kangawa, Epitaxial Growth of III-Nitride Compounds: Computational Approach, Springer2018.
[93] T. Akiyama, Y. Saito, K. Nakamura, T. Ito, Nitridation of Al 2 O 3 surfaces: chemical and structural change triggered by oxygen desorption, Physical review letters, 110 (2013) 026101.
[94] S. Clarke, D.D. Vvedensky, Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach, Physical review letters, 58 (1987) 2235.
[95] Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, T. Ohachi, A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces, Surface science, 493 (2001) 178-181.
[96] R. Lam, D. Vlachos, Multiscale model for epitaxial growth of films: Growth mode transition, Physical Review B, 64 (2001) 035401. |