參考文獻 |
1. Fahy E, Cotter D, Sud M, Subramaniam S: Lipid classification, structures and tools. Biochim Biophys Acta 2011, 1811(11):637-647.
2. Klug L, Daum G: Yeast lipid metabolism at a glance. FEMS Yeast Research 2014, 14(3):369-388.
3. Hasslacher M, Ivessa AS, Paltauf F, Kohlwein SD: Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem 1993, 268(15):10946-10952.
4. Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E: HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 2004, 279(21):21779-21786.
5. Tehlivets O, Scheuringer K, Kohlwein SD: Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 2007, 1771(3):255-270.
6. Wieland F, Renner L, Verfürth C, Lynen F: Studies on the multi-enzyme complex of yeast fatty-acid synthetase. Reversible dissociation and isolation of two polypeptide chains. Eur J Biochem 1979, 94(1):189-197.
7. Hiltunen JK, Autio KJ, Schonauer MS, Kursu VA, Dieckmann CL, Kastaniotis AJ: Mitochondrial fatty acid synthesis and respiration. Biochim Biophys Acta 2010, 1797(6-7):1195-1202.
8. Henry SA, Kohlwein SD, Carman GM: Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 2012, 190(2):317-349.
9. Blank HM, Perez R, He C, Maitra N, Metz R, Hill J, Lin Y, Johnson CD, Bankaitis VA, Kennedy BK et al: Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. Embo j 2017, 36(4):487-502.
10. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ et al: A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 1998, 2(1):65-73.
11. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9(12):3273-3297.
12. Shirra MK, Patton-Vogt J, Ulrich A, Liuta-Tehlivets O, Kohlwein SD, Henry SA, Arndt KM: Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol 2001, 21(17):5710-5722.
13. Schüller HJ, Schütz A, Knab S, Hoffmann B, Schweizer E: Importance of general regulatory factors Rap1p, Abf1p and Reb1p for the activation of yeast fatty acid synthase genes FAS1 and FAS2. Eur J Biochem 1994, 225(1):213-222.
14. Chirala SS: Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1992, 89(21):10232-10236.
15. Greenberg ML, Lopes JM: Genetic regulation of phospholipid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1996, 60(1):1-20.
16. Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D: Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 1994, 269(30):19509-19515.
17. Schüller HJ, Hahn A, Tröster F, Schütz A, Schweizer E: Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. Embo j 1992, 11(1):107-114.
18. Wenz P, Schwank S, Hoja U, Schüller HJ: A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product. Nucleic Acids Res 2001, 29(22):4625-4632.
19. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP: A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003, 21(8):921-926.
20. Scazzari M, Amm I, Wolf DH: Quality control of a cytoplasmic protein complex: chaperone motors and the ubiquitin-proteasome system govern the fate of orphan fatty acid synthase subunit Fas2 of yeast. J Biol Chem 2015, 290(8):4677-4687.
21. Shpilka T, Welter E, Borovsky N, Amar N, Shimron F, Peleg Y, Elazar Z: Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast. Proc Natl Acad Sci U S A 2015, 112(5):1434-1439.
22. Singh K, Graf B, Linden A, Sautner V, Urlaub H, Tittmann K, Stark H, Chari A: Discovery of a Regulatory Subunit of the Yeast Fatty Acid Synthase. Cell 2020, 180(6):1130-1143.e1120.
23. Black PN, DiRusso CC: Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 2007, 1771(3):286-298.
24. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A: The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 2003, 27(1):35-64.
25. Houten SM, Violante S, Ventura FV, Wanders RJ: The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2016, 78:23-44.
26. Dmochowska A, Dignard D, Maleszka R, Thomas DY: Structure and transcriptional control of the Saccharomyces cerevisiae POX1 gene encoding acyl-coenzyme A oxidase. Gene 1990, 88(2):247-252.
27. Hiltunen JK, Wenzel B, Beyer A, Erdmann R, Fosså A, Kunau WH: Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product. J Biol Chem 1992, 267(10):6646-6653.
28. Mathieu M, Modis Y, Zeelen JP, Engel CK, Abagyan RA, Ahlberg A, Rasmussen B, Lamzin VS, Kunau WH, Wierenga RK: The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J Mol Biol 1997, 273(3):714-728.
29. Elgersma Y, van Roermund CW, Wanders RJ, Tabak HF: Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. Embo j 1995, 14(14):3472-3479.
30. Martínez-Reyes I, Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nature Communications 2020, 11(1):102.
31. Gurvitz A, Mursula AM, Firzinger A, Hamilton B, Kilpeläinen SH, Hartig A, Ruis H, Hiltunen JK, Rottensteiner H: Peroxisomal Delta3-cis-Delta2-trans-enoyl-CoA isomerase encoded by ECI1 is required for growth of the yeast Saccharomyces cerevisiae on unsaturated fatty acids. J Biol Chem 1998, 273(47):31366-31374.
32. Gurvitz A, Rottensteiner H, Kilpeläinen SH, Hartig A, Hiltunen JK, Binder M, Dawes IW, Hamilton B: The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J Biol Chem 1997, 272(35):22140-22147.
33. Veenhuis M, Mateblowski M, Kunau WH, Harder W: Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 1987, 3(2):77-84.
34. Rottensteiner H, Wabnegger L, Erdmann R, Hamilton B, Ruis H, Hartig A, Gurvitz A: Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J Biol Chem 2003, 278(30):27605-27611.
35. Filipits M, Simon MM, Rapatz W, Hamilton B, Ruis H: A Saccharomyces cerevisiae upstream activating sequence mediates induction of peroxisome proliferation by fatty acids. Gene 1993, 132(1):49-55.
36. Einerhand AW, Kos WT, Distel B, Tabak HF: Characterization of a transcriptional control element involved in proliferation of peroxisomes in yeast in response to oleate. Eur J Biochem 1993, 214(1):323-331.
37. Cheng C, Kacherovsky N, Dombek KM, Camier S, Thukral SK, Rhim E, Young ET: Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol 1994, 14(6):3842-3852.
38. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y: A review on phospholipids and their main applications in drug delivery systems. Asian Journal of Pharmaceutical Sciences 2015, 10(2):81-98.
39. Carman GM, Han GS: Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 2011, 80:859-883.
40. Barman A, Gohain D, Bora U, Tamuli R: Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiological Research 2018, 209:55-69.
41. Murray JP, McMaster CR: Nte1p-mediated deacylation of phosphatidylcholine functionally interacts with Sec14p. J Biol Chem 2005, 280(9):8544-8552.
42. Lee KS, Patton JL, Fido M, Hines LK, Kohlwein SD, Paltauf F, Henry SA, Levin DE: The Saccharomyces cerevisiae PLB1 gene encodes a protein required for lysophospholipase and phospholipase B activity. J Biol Chem 1994, 269(31):19725-19730.
43. Merkel O, Oskolkova OV, Raab F, El-Toukhy R, Paltauf F: Regulation of activity in vitro and in vivo of three phospholipases B from Saccharomyces cerevisiae. Biochem J 2005, 387(Pt 2):489-496.
44. Coccetti P, Tisi R, Martegani E, Souza Teixeira L, Lopes Brandão R, de Miranda Castro I, Thevelein JM: The PLC1 encoded phospholipase C in the yeast Saccharomyces cerevisiae is essential for glucose-induced phosphatidylinositol turnover and activation of plasma membrane H+-ATPase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1998, 1405(1):147-154.
45. Simocková M, Holic R, Tahotná D, Patton-Vogt J, Griac P: Yeast Pgc1p (YPL206c) controls the amount of phosphatidylglycerol via a phospholipase C-type degradation mechanism. J Biol Chem 2008, 283(25):17107-17115.
46. Ella KM, Dolan JW, Meier KE: Characterization of a regulated form of phospholipase D in the yeast Saccharomyces cerevisiae. Biochem J 1995, 307 ( Pt 3)(Pt 3):799-805.
47. Putta P, Rankenberg J, Korver RA, van Wijk R, Munnik T, Testerink C, Kooijman EE: Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim Biophys Acta 2016, 1858(11):2709-2716.
48. Loewen CJ, Roy A, Levine TP: A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. Embo j 2003, 22(9):2025-2035.
49. Carman GM, Han GS: Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta 2007, 1771(3):322-330.
50. Nikawa J, Yamashita S: Molecular cloning of the gene encoding CDPdiacylglycerol-inositol 3-phosphatidyl transferase in Saccharomyces cerevisiae. Eur J Biochem 1984, 143(2):251-256.
51. Kersting MC, Carman GM: Regulation of the Saccharomyces cerevisiae EKI1-encoded ethanolamine kinase by zinc depletion. J Biol Chem 2006, 281(19):13110-13116.
52. Soto A, Carman GM: Regulation of the Saccharomyces cerevisiae CKI1-encoded choline kinase by zinc depletion. J Biol Chem 2008, 283(15):10079-10088.
53. Su WM, Han GS, Carman GM: Yeast Nem1-Spo7 protein phosphatase activity on Pah1 phosphatidate phosphatase is specific for the Pho85-Pho80 protein kinase phosphorylation sites. J Biol Chem 2014, 289(50):34699-34708.
54. Karanasios E, Han GS, Xu Z, Carman GM, Siniossoglou S: A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc Natl Acad Sci U S A 2010, 107(41):17539-17544.
55. Wu WI, Lin YP, Wang E, Merrill AH, Jr., Carman GM: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by sphingoid bases. J Biol Chem 1993, 268(19):13830-13837.
56. Wu WI, Carman GM: Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by phospholipids. Biochemistry 1996, 35(12):3790-3796.
57. Cowart LA, Obeid LM: Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta 2007, 1771(3):421-431.
58. Dickson RC, Lester RL: Sphingolipid functions in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2002, 1583(1):13-25.
59. Dickson RC: Roles for sphingolipids in Saccharomyces cerevisiae. Adv Exp Med Biol 2010, 688:217-231.
60. Gupta SD, Gable K, Han G, Borovitskaya A, Selby L, Dunn TM, Harmon JM: Tsc10p and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. J Lipid Res 2009, 50(8):1630-1640.
61. Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY: Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem 1998, 273(18):11062-11068.
62. Jordá T, Puig S: Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 2020, 11(7).
63. Johnston EJ, Moses T, Rosser SJ: The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. 2020, 37(1):27-44.
64. Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B: Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in Saccharomyces cerevisiae. Indian J Microbiol 2017, 57(3):270-277.
65. Choudhary V, Schneiter R: Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proc Natl Acad Sci U S A 2012, 109(42):16882-16887.
66. Kentala H, Weber-Boyvat M, Olkkonen VM: OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. Int Rev Cell Mol Biol 2016, 321:299-340.
67. Los DA, Murata N: Regulation of enzymatic activity and gene expression by membrane fluidity. Sci STKE 2000, 2000(62):pe1.
68. Orvar BL, Sangwan V, Omann F, Dhindsa RS: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 2000, 23(6):785-794.
69. Los DA, Murata N: Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta (BBA) - Biomembranes 2004, 1666(1):142-157.
70. Pande AH, Qin S, Tatulian SA: Membrane fluidity is a key modulator of membrane binding, insertion, and activity of 5-lipoxygenase. Biophys J 2005, 88(6):4084-4094.
71. Stillwell W: Chapter 9 - Basic Membrane Properties of the Fluid Mosaic Model. In: An Introduction to Biological Membranes (Second Edition). Edited by Stillwell W: Elsevier; 2016: 135-180.
72. Fozo EM, Rucks EA: Chapter Two - The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. In: Advances in Microbial Physiology. Edited by Poole RK, vol. 69: Academic Press; 2016: 51-155.
73. Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD: Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Progress in Biophysics and Molecular Biology 2007, 95(1):60-82.
74. Ernst R, Ejsing CS, Antonny B: Homeoviscous Adaptation and the Regulation of Membrane Lipids. J Mol Biol 2016, 428(24 Pt A):4776-4791.
75. Dufourc EJ: The role of phytosterols in plant adaptation to temperature. Plant Signal Behav 2008, 3(2):133-134.
76. Dufourc EJ: Sterols and membrane dynamics. J Chem Biol 2008, 1(1-4):63-77.
77. Uemura S, Shishido F, Tani M, Mochizuki T, Abe F, Inokuchi J: Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae. J Lipid Res 2014, 55(7):1343-1356.
78. Cao S, Zhou X-R, Wood CC, Green AG, Singh SP, Liu L, Liu Q: A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC plant biology 2013, 13:5-5.
79. Miyazaki M, Ntambi JM: CHAPTER 7 - Fatty acid desaturation and chain elongation in mammals. In: Biochemistry of Lipids, Lipoproteins and Membranes (Fifth Edition). Edited by Vance DE, Vance JE. San Diego: Elsevier; 2008: 191-211.
80. Paton CM, Ntambi JM: Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 2009, 297(1):E28-37.
81. AM AL, Syed DN, Ntambi JM: Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol Metab 2017, 28(12):831-842.
82. Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, Zhou M: X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 2015, 524(7564):252-256.
83. Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K, Sang B-C: Crystal structure of human stearoyl–coenzyme A desaturase in complex with substrate. Nature Structural & Molecular Biology 2015, 22(7):581-585.
84. Mitchell AG, Martin CE: A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J Biol Chem 1995, 270(50):29766-29772.
85. Stukey JE, McDonough VM, Martin CE: The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 1990, 265(33):20144-20149.
86. Stephanie B, Robert E: Control of membrane fluidity: the OLE pathway in focus. Biological Chemistry 2017, 398(2):215-228.
87. Shcherbik N, Zoladek T, Nickels JT, Haines DS: Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90. Curr Biol 2003, 13(14):1227-1233.
88. Rape M, Hoppe T, Gorr I, Kalocay M, Richly H, Jentsch S: Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 2001, 107(5):667-677.
89. Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S: Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000, 102(5):577-586.
90. Ballweg S, Sezgin E, Doktorova M, Covino R, Reinhard J, Wunnicke D, Hänelt I, Levental I, Hummer G, Ernst R: Regulation of lipid saturation without sensing membrane fluidity. Nature Communications 2020, 11(1):756.
91. Choi JY, Stukey J, Hwang SY, Martin CE: Regulatory elements that control transcription activation and unsaturated fatty acid-mediated repression of the Saccharomyces cerevisiae OLE1 gene. J Biol Chem 1996, 271(7):3581-3589.
92. Nakagawa Y, Sugioka S, Kaneko Y, Harashima S: O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae. J Bacteriol 2001, 183(2):745-751.
93. Vasconcelles MJ, Jiang Y, McDaid K, Gilooly L, Wretzel S, Porter DL, Martin CE, Goldberg MA: Identification and characterization of a low oxygen response element involved in the hypoxic induction of a family of Saccharomyces cerevisiae genes. Implications for the conservation of oxygen sensing in eukaryotes. J Biol Chem 2001, 276(17):14374-14384.
94. Gonzalez CI, Martin CE: Fatty acid-responsive control of mRNA stability. Unsaturated fatty acid-induced degradation of the Saccharomyces OLE1 transcript. J Biol Chem 1996, 271(42):25801-25809.
95. Vemula M, Kandasamy P, Oh CS, Chellappa R, Gonzalez CI, Martin CE: Maintenance and regulation of mRNA stability of the Saccharomyces cerevisiae OLE1 gene requires multiple elements within the transcript that act through translation-independent mechanisms. J Biol Chem 2003, 278(46):45269-45279.
96. Kandasamy P, Vemula M, Oh CS, Chellappa R, Martin CE: Regulation of unsaturated fatty acid biosynthesis in Saccharomyces: the endoplasmic reticulum membrane protein, Mga2p, a transcription activator of the OLE1 gene, regulates the stability of the OLE1 mRNA through exosome-mediated mechanisms. J Biol Chem 2004, 279(35):36586-36592.
97. Thibault G, Ng DT: The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 2012, 4(12).
98. Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S: Role of the ubiquitin-selective CDC48(UFD1/NPL4 )chaperone (segregase) in ERAD of OLE1 and other substrates. Embo j 2002, 21(4):615-621.
99. Ntambi JM: Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999, 40(9):1549-1558.
100. Tracz-Gaszewska Z, Dobrzyn P: Stearoyl-CoA Desaturase 1 as a Therapeutic Target for the Treatment of Cancer. Cancers 2019, 11(7):948.
101. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
102. Hsu TH, Chen RH, Cheng YH, Wang CW: Lipid droplets are central organelles for meiosis II progression during yeast sporulation. Mol Biol Cell 2017, 28(3):440-451.
103. Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226(1):497-509.
104. Morrison WR, Smith LM: Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 1964, 5:600-608.
105. Hung YF, Chen CY, Li WC, Wang TF, Hsueh YP: Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav Immun 2018, 72:101-113.
106. Hung YF, Chen CY, Shih YC, Liu HY, Huang CM, Hsueh YP: Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol 2018, 217(8):2727-2742.
107. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
108. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO::TermFinder--open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004, 20(18):3710-3715.
109. Stukey JE, McDonough VM, Martin CE: Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 1989, 264(28):16537-16544.
110. Zhu J, Zhang ZT, Tang SW, Zhao BS, Li H, Song JZ, Li D, Xie Z: A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae). mBio 2019, 10(5).
111. Lyons TJ, Villa NY, Regalla LM, Kupchak BR, Vagstad A, Eide DJ: Metalloregulation of yeast membrane steroid receptor homologs. Proc Natl Acad Sci U S A 2004, 101(15):5506-5511.
112. Beh CT, Cool L, Phillips J, Rine J: Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics 2001, 157(3):1117-1140.
113. Hoppen J, Repenning A, Albrecht A, Geburtig S, Schüller HJ: Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis. Yeast 2005, 22(8):601-613.
114. Pittet M, Conzelmann A: Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007, 1771(3):405-420.
115. Carman GM, Henry SA: Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2007, 282(52):37293-37297.
116. Ghosh AK, Ramakrishnan G, Rajasekharan R: YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem 2008, 283(15):9768-9775.
117. Miura S, Zou W, Ueda M, Tanaka A: Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display. Appl Environ Microbiol 2000, 66(11):4883-4889.
118. Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, Riezman H: Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 2002, 13(8):2664-2680.
119. Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J: Biofuels. Altered sterol composition renders yeast thermotolerant. Science 2014, 346(6205):75-78.
120. Zhang L, Hach A: Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator. Cell Mol Life Sci 1999, 56(5-6):415-426.
121. Grabińska K, Palamarczyk G: Dolichol biosynthesis in the yeast Saccharomyces cerevisiae: an insight into the regulatory role of farnesyl diphosphate synthase. FEMS Yeast Res 2002, 2(3):259-265.
122. Turunen M, Olsson J, Dallner G: Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004, 1660(1-2):171-199.
123. Marshall CJ: Protein prenylation: a mediator of protein-protein interactions. Science 1993, 259(5103):1865-1866.
124. Omer CA, Gibbs JB: Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol Microbiol 1994, 11(2):219-225.
125. Tamanoi F: Ras signaling in yeast. Genes Cancer 2011, 2(3):210-215.
126. Wright LP, Philips MR: Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 2006, 47(5):883-891.
127. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992, 70(3):401-410.
128. Dickson RC: Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 2008, 49(5):909-921. |