參考文獻 |
1. Li, M., et al., Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. 2017. 13(36): p. 1701147.
2. Katzke, H., P. Tolédano, and W.J.P.R.B. Depmeier, Theory of morphotropic transformations in vanadium oxides. 2003. 68(2): p. 024109.
3. Leroux, C., G. Nihoul, and G.J.P.r.B. Van Tendeloo, From VO 2 (B) to VO 2 (R): Theoretical structures of VO 2 polymorphs and in situ electron microscopy. 1998. 57(9): p. 5111.
4. Oka, Y., T. Yao, and N.J.J.o.S.S.C. Yamamoto, Powder X-ray crystal structure of VO2 (A). 1990. 86(1): p. 116-124.
5. Yang, Z., C. Ko, and S.J.A.R.o.M.R. Ramanathan, Oxide electronics utilizing ultrafast metal-insulator transitions. 2011. 41: p. 337-367.
6. Goodenough, J.B.J.J.o.S.S.C., The two components of the crystallographic transition in VO2. 1971. 3(4): p. 490-500.
7. Zhang, J., et al., Self-assembling VO2 nanonet with high switching performance at wafer-scale. 2015. 27(21): p. 7419-7424.
8. Ji, C., et al., High thermochromic performance of Fe/Mg co-doped VO 2 thin films for smart window applications. 2018. 6(24): p. 6502-6509.
9. Dai, L., et al., F-doped VO 2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. 2013. 15(28): p. 11723-11729.
10. Wang, N., et al., Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. 2015. 3(26): p. 6771-6777.
11. Dietrich, M.K., et al., Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications. 2017. 110(14): p. 141907.
12. Song, L., et al., Preparation and thermochromic properties of Ce-doped VO2 films. 2013. 48(6): p. 2268-2271.
13. Gu, D., et al., Influence of Gadolinium-doping on the microstructures and phase transition characteristics of VO2 thin films. 2017. 705: p. 64-69.
14. Wang, N., et al., Terbium-doped VO2 thin films: reduced phase transition temperature and largely enhanced luminous transmittance. 2016. 32(3): p. 759-764.
15. Wang, N., et al., Effect of lanthanum doping on modulating the thermochromic properties of VO 2 thin films. 2016. 6(54): p. 48455-48461.
16. Tan, X., et al., Unraveling metal-insulator transition mechanism of VO 2 triggered by tungsten doping. 2012. 2(1): p. 1-6.
17. Faucheu, J., E. Bourgeat‐Lami, and V.J.A.E.M. Prevot, A Review of Vanadium Dioxide as an Actor of Nanothermochromism: Challenges and Perspectives for Polymer Nanocomposites. 2019. 21(2): p. 1800438.
18. Lu, S., L. Hou, and F.J.T.s.f. Gan, Surface analysis and phase transition of gel-derived VO2 thin films. 1999. 353(1-2): p. 40-44.
19. Xu, J., et al., Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder. 2019. 9(1): p. 113.
20. Chen, S., et al., Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study. 2014. 118(33): p. 18938-18944.
21. He, X., et al., Orbital change manipulation metal–insulator transition temperature in W-doped VO 2. 2015. 17(17): p. 11638-11646.
22. Lu, L., et al., Effect of Fe doping on thermochromic properties of VO 2 films. 2018. 29(7): p. 5501-5508.
23. Qu, Z., et al., Surface and interface engineering for VO2 coatings with excellent optical performance: From theory to practice. 2019. 109: p. 195-212.
24. Wang, S., et al., Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. 2016. 81: p. 1-54.
25. Zhou, J., et al., Mg-doped VO 2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature. 2013. 15(20): p. 7505-7511.
26. Chen, S., et al., The visible transmittance and solar modulation ability of VO 2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. 2013. 15(40): p. 17537-17543.
27. Shen, N., et al., The synthesis and performance of Zr-doped and W–Zr-codoped VO 2 nanoparticles and derived flexible foils. 2014. 2(36): p. 15087-15093.
28. Burkhardt, W., et al., Tungsten and fluorine co-doping of VO2 films. 2002. 402(1-2): p. 226-231.
29. Rajeswaran, B. and A.M.J.A.A. Umarji, Effect of W addition on the electrical switching of VO2 thin films. 2016. 6(3): p. 035215.
30. Mai, L., et al., Electrical property of Mo-doped VO2 nanowire array film by melting− quenching sol− gel method. 2006. 110(39): p. 19083-19086.
31. Pinceloup, P., et al., Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders. 1999. 19(6-7): p. 973-977.
32. Théobald, F.J.J.o.t.L.C.M., Étude hydrothermale du système VO2-VO2, 5-H2O. 1977. 53(1): p. 55-71.
33. Cao, C., Y. Gao, and H.J.T.J.o.P.C.C. Luo, Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. 2008. 112(48): p. 18810-18814.
34. Ji, S., et al., Preparation of high performance pure single phase VO2 nanopowder by hydrothermally reducing the V2O5 gel. 2011. 95(12): p. 3520-3526.
35. Wang, N., et al., Single‐Crystalline W‐Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature. 2016. 3(15): p. 1600164.
36. Popuri, S.R., et al., Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1). 2013. 52(9): p. 4780-4785.
37. Pavasupree, S., et al., Synthesis and characterization of vanadium oxides nanorods. 2005. 178(6): p. 2152-2158.
38. Romanyuk, A., et al., Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy. 2007. 91(19): p. 1831-1835. |