博碩士論文 107226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.216.95.250
姓名 葉冠廷(Guan-Ting Yeh)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以週期性晶疇極化反轉鈦擴散式鈮酸鋰波導 絕熱耦合器作為全光開關之研究
(Non-phase-matched all optical switching based on stimulated Raman adiabatic passage in Ti-diffused periodically poled lithium niobate waveguides)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 透過光學材料像是鈮酸鋰晶體製作的波導耦合器能夠有將光/模態分開的功能,但當結構被訂定時其分光的結果就被決定了,也因此有許多的方法被發現能夠改變分光比,例如外加電場、改變材料特性或是光學調製。
在本論文中,透過設計特定的週期性極化反轉結構以及絕熱耦合器在鈮酸鋰晶體上,其入射光進入絕熱耦合器及週期性極化反轉結構時將會利用受激拉曼機制產生分光現象以及滿足準相位匹配產生倍頻現象,但當操作鈮酸鋰晶體的溫度在相位不匹配條件時,在基頻與倍頻轉換的過程中發現非線性相位改變,且透過增加輸入光強度也會增加其相位的改變,也就是轉換交互的過程變得更強。透過模擬,當外加高強度的光時波導兩個出口能夠得到分光比大於20dB的結果。這樣的光開關相比於電控開關來說,其調製的速度能夠快非常多,另外絕熱耦合器對於製程及輸入的波長也具有相當高的容忍度,是為一大優勢。
本研究中,利用鈦擴散波導製程製作40mm長的絕熱耦合器,產生倍頻的週期為17.22um,當輸入波長1550nm且尖端功率為589W的脈衝雷射時能夠得到分比從1:9改變至3:7,而進一步改善討論將會在後續探討。
週期性極化反轉鈮酸鋰產生倍頻在絕熱耦合器上的全光開關設計具有操作簡單、穩定以及高製程容忍度,這樣的設計對於未來積體光路以及光邏輯閘的實現將會是一大進步。
摘要(英) Waveguide couplers can perform the beam/mode splitting of an optical wave based on an optical material like lithium niobate crystal. However, usually the split ratio of a wave in couplers is fixed when the structure of the coupler is fabricated. Hence many methods have been discovered to enable the varying of the split ratio actively, such as applying voltages, modifying material properties, and using optical modulation.
In this thesis, I design a specific periodically poled structure and an adiabatic coupler in a lithium niobate crystal. The periodically poled structure is used to quasi-phase-match a second-harmonic generation (SHG) process of the fundamental wave as a pump for exciting a three-waveguide adiabatic coupler system designed based on the stimulated Raman adiabatic passage mechanism. When operated at a proper phase mismatching condition of the SHG process via the temperature control of the lithium niobate crystal, a nonlinear phase shift between the fundamental and the second harmonic waves will occur during their power conversion process, increased with the increase of the input power according to dispersion relationship between the two interacting waves. This nonlinear phase shift effect causes the change of the propagation constant of the waveguide seen by the input wave and therefore changes the coupling condition of the adiabatic coupler. Ideally in my simulation, the switching between the two outer waveguides of the coupler can reach an extinction ratio of >20 dB when a properly high input power is used. Such an all optical switching device is attractive in contrast to other optical switching methods because it is relatively fast without the need of an external phase modulation mechanism using such as a fast voltage supplier. Besides, the device is robust as the use of the adiabatic coupler featured by high fabrication tolerance and broad bandwidth.
In this study, a PPLN SHG of period 17.22 m is fabricated in the input arm of a 40-mm long adiabatic coupler comprising three Ti-diffused lithium niobate waveguides. An optical switching with a split ratio of from ~1:9 to 3:7 has been observed from such a device when pumped by a 1550-nm ps laser of a peak power 589 W. Further improvement of the performance of the device is discussed.
The proposed PPLN SHG adiabatic coupler all-optical-switching device can be operationally simple, robust, and fabrication tolerant, which can be of great potential for many applications including optical logic gates in integrated optical circuits.
關鍵字(中) ★ 週期性晶疇極化反轉
★ 鈦擴散式鈮酸鋰波導
★ 絕熱耦合器
★ 全光開關
關鍵字(英) ★ periodically poled
★ Ti-diffused lithium niobate waveguides
★ adiabatic coupler
★ all optical switching
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1發展與歷史 1
1.2鈮酸鋰晶體 2
1.3研究動機 5
1.4內容概要 6
第二章 理論 7
2.1波導理論 7
2.1.1拉比共振(Rabi oscillation): 7
2.1.2 Stimulated Raman adiabatic passage理論: 8
2.1.3波導耦合理論: 11
2.2準相位匹配 17
2.2.1相位匹配 17
2.2.2準相位匹配(Quasi-Phase-Matching, QPM) 22
2.3倍頻機制 24
2.4疊接非線性效應(casecaded nonlinear effect) 28
第三章 模擬與元件設計 32
3.1 三斜波導之結構設計 32
3.2光強度與週期性極化反轉設計之模擬 34
第四章 製程 42
4.1波導製程之黃光製程 42
4.3晶疇極化反轉之黃光製程 45
4.4外加高電壓反轉晶疇製程 46
第五章 實驗量測及分析結果 53
5.1實驗架構及量測說明 53
5.2實驗結果 54
5.2.1絕熱耦合器量測 54
5.2.2倍頻訊號量測 56
5.2.3非線性分光比量測 58
5.3結果分析與討論 59
5.3.1絕熱耦合器量測分析 59
5.3.2倍頻量測分析 60
5.3.3非線性量測分析 61
第六章 結論與未來展望 66
6.1結論 66
6.2未來展望 66
第七章 參考文獻 69
參考文獻 [1] A. Einstein, “Zum gegenwärtigen Stande des Strahlungsproblems.” Physikalische Zeitschrift, Band 10, Seite, p.185–193, (1909)
[2] M. Planck, “On the law of distribution of energy in the normal spectrum.”, Annalen der physik 4.553, p.1, (1901)
[3] E. M. Purcell and R. V. Pound, “A Nuclear Spin System at Negative Temperature.”, Physical Review Letters. 81, 1951
[4] T. H. Maiman, “Stimulated Optical Radiation in Ruby.”, Nature, 187, 1960
[5] S. E. Miller, “Integrated Optics : an Introduction.”, Bell System Technical Journal, 48, 1969
[6] W. H. Zachariasen, “Skr. Norske Vid-Ada.”, Oslo, Mat. Naturv, No.4, (1928)
[7] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique.”, J. American Ceram. Soc. 48, p.112, (1965)
[8] 孔勇發,許京軍,張光寅,劉思敏,陸猗,「多功能光電材料–鈮酸鋰晶體」,科學出版社,2005
[9] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate.”, Optics letters, Vol.22, No.20, pp. 1553-1555, 1997
[10]R. V. Schmidt, “Efficient optical waveguide switch/amplitude modulator” Opt. Lett., vol.2, No.2, 1978.
[11]Yijing Chen, Seng-Tiong Ho, Vivek Krishnamurthy, “All-optical switching in a symmetric three-waveguide coupler with phase-mismatched absorptive central waveguide”, Applied Optics , 52(36), 8845, 2013
[12] Gaubatz, U., et al. "Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results."The Journal of Chemical Physics92.9 (1990): 5363-5376.
[13] Bergmann, K., H. Theuer, and B. W. Shore. "Coherent population transfer among quantum states of atoms and molecules."Reviews of Modern Physics70.3 (1998): 1003.
[14] A. Yariv and P. Yeh, “Optical waves in Crystals.”, Wiley, New York, 1983
[15] J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization.”, British Journal of Applied Physics, Vol. 16, No. 8, 1962
[16] M. V. Hobden and J. Warner, “The Temperature Dependence of The Refractive Indices of Pure Lithium Niobate.”, Physics Letters, 22, 1966
[17] Yen-Chieh Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
[18] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical Review, Vol. 127, 1962
[19]G.I. Stegeman, “χ^((2))cascading: nonlinear phase shifts.”, Quantum Semiclass. Opt. 9 139, 1997
[20] R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers ” Appl.Opt. 18, p4012-4016, 1979
[21]楊松霖“以週期性晶疇極化反轉鈦擴散鈮酸鋰波導晶片作為偏振可調定向耦合器之研究” 國立中央大學光電工程所碩士論文,2013
[22]黃光旭“三通道鈦擴散式鈮酸鋰波導絕熱耦合器之研究”國立中央大學光電工程所碩士論文, 2014
[23] H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides” Optics express, p. 30641-30650, 2015
[24] Klyoshi Nakamura, and Haruyasu Ando, and Hiroshi Shimizu , “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment.” Appl. Phys. Lett., 50, 18, 1987
[25]Bor-Uei Chen, Antonio C. Pastor, and Hiroshi Shimizu , “Elimination of Li20 out-diffusion waveguide in LiNbO3 and LiTaO3” Appl. Phys. Lett., 30, 11, 1977
[26] G. Schreiber, H. Suche, Y. L. Lee, W. Grundkotter, V. Quiring, R. Ricken, W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed an cw pumping,” Appl. Phys. B, 73, p501-504 , 2001
[27] L. H. Peng, Y. J. Shih, and Y. C. Zhang, “Restrictive domain motion in polarization switching of Lithium Niobate.” Appl. Phys. Lett., 81, p1666-1668 , 2002
[28] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic-generation,” Appl. Phys. Lett., 62, p435-436 ,1993
[29] Henk J. Bolink, Gustaaf R. Moehlmann, Victor V. Krasnikov, George G. Malliaras, Georges Hadziioannou, “Photorefractive polymer materials”, Nonlinear Optical Properties of Organic Materials VI (SPIE Proceedings) , 2025, 292, 1993
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2021-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明