參考文獻 |
1. Rüßmann, M., et al., Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 2015. 9.
2. Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1-6): p. 244-248.
3. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181.
4. microfluidics-market. Available from: https://www.databridgemarketresearch.com/reports/global-microfluidics-market.
5. Amanullah, M.A., et al., Deep learning and big data technologies for IoT security. Computer Communications, 2020.
6. Agrawal, D., et al. Data management challenges in cloud computing infrastructures. in International Workshop on Databases in Networked Information Systems. 2010. Springer.
7. Henry, A.C., et al., Surface modification of poly (methyl methacrylate) used in the fabrication of microanalytical devices. Analytical chemistry, 2000. 72(21): p. 5331-5337.
8. Roberts, M.A., et al., UV laser machined polymer substrates for the development of microdiagnostic systems. Analytical chemistry, 1997. 69(11): p. 2035-2042.
9. Roy, S., et al., Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sensors and Actuators B: Chemical, 2010. 150(2): p. 537-549.
10. Andersen, N.K. and R. Taboryski, Multi-height structures in injection molded polymer. Microelectronic Engineering, 2015. 141: p. 211-214.
11. Kadoya, S., et al., Structure size effect on polymer infiltration in injection molded direct joining. Precision Engineering. 67: p. 100-109.
12. Lu, Y., K. Jiang, and M. Wang, Study on rheological properties of in-mold co-injection self-reinforced polymer melt. Polymer Testing, 2020: p. 106910.
13. Evens, T., et al., A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manufacturing Letters, 2020. 24: p. 29-32.
14. Rabhi, F., et al., Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process. Journal of Manufacturing Processes, 2020. 59: p. 487-499.
15. Wang, J., et al., Recovery behavior of thermoplastic polymers in micro hot embossing process. Journal of Materials Processing Technology, 2017. 243: p. 205-216.
16. Kuo, C.-C. and T.-S. Chiang, Development of a precision hot embossing tool with microstructures for microfabrication. The International Journal of Advanced Manufacturing Technology, 2017. 91(1-4): p. 1321-1326.
17. Li, L., Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device, in Electroporation Protocols. 2020, Springer. p. 21-27.
18. Yeo, L., et al., Investigation of hot roller embossing for microfluidic devices. Journal of Micromechanics and Microengineering, 2009. 20(1): p. 015017.
19. Mohammed, M.I., et al., Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer. Journal of Micromechanics and Microengineering, 2016. 27(1): p. 015021.
20. Mohammed, M.I., et al., Improved manufacturing quality and bonding of laser machined microfluidic systems. Procedia Technology, 2015. 20: p. 219-224.
21. Bilican, I. and M.T. Guler, Assessment of PMMA and polystyrene based microfluidic chips fabricated using CO2 laser machining. Applied Surface Science, 2020. 534: p. 147642.
22. Zhang, Y. and J. Wang, Fabrication of functionally graded porous polymer structures using thermal bonding lamination techniques. Procedia Manufacturing, 2017. 10: p. 866-875.
23. Zhou, M., et al., Molecular Dynamics Simulation on the Effect of Bonding Pressure on Thermal Bonding of Polymer Microfluidic Chip. Polymers, 2019. 11(3): p. 557.
24. Nageswaran, G., L. Jothi, and S. Jagannathan, Plasma Assisted Polymer Modifications, in Non-Thermal Plasma Technology for Polymeric Materials. 2019, Elsevier. p. 95-127.
25. Pečar, B., M. Možek, and D. Vrtačnik, Thermoplastic-PDMS polymer covalent bonding for microfluidic applications. Informacije MIDEM, 2017. 47(3): p. 147-154.
26. Faghih, M.M. and M.K. Sharp, Solvent-based bonding of PMMA–PMMA for microfluidic applications. Microsystem Technologies, 2019. 25(9): p. 3547-3558.
27. Aadhy, S., et al., Comparative studies of energy saving polymers and fabrication of high performance transparent polymer by solvent bonding. Journal of Polymer Engineering, 2018. 39(1): p. 68-75.
28. Schwenter, J., et al., Adhesive bonding to polymer infiltrated ceramic. Dental materials journal, 2016. 35(5): p. 796-802.
29. Yin, Z., E. Cheng, and H. Zou, Fast microfluidic chip fabrication technique by laser erosion and sticky tape assist bonding technique. Journal of nanoscience and nanotechnology, 2018. 18(6): p. 4082-4086.
30. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 2015. 15(11): p. 2364-2378.
31. Serra, M., et al., A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab on a Chip, 2017. 17(4): p. 629-634.
32. Taghizadeh, S., A. Özdemir, and O. Uluer, Warpage prediction in plastic injection molded part using artificial neural network. Iranian Journal of Science and Technology. Transactions of Mechanical Engineering, 2013. 37(M2): p. 149.
33. D’Addona, D.M., et al., Prediction of poly-methyl-methacrylate laser milling process characteristics based on neural networks and fuzzy data. Procedia Cirp, 2016. 41: p. 981-986.
34. Chiu, H.-W. and C.-H. Lee, Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach. Advances in Engineering Software, 2017. 114: p. 246-257.
35. Park, H.-s., et al., Development of smart machining system for optimizing feedrates to minimize machining time. Journal of Computational Design and Engineering, 2018. 5(3): p. 299-304.
36. Moreira, L.C., et al., Supervision controller for real-time surface quality assurance in CNC machining using artificial intelligence. Computers & Industrial Engineering, 2019. 127: p. 158-168.
37. Yoon, J.-S., S.-J. Shin, and S.-H. Suh, A conceptual framework for the ubiquitous factory. International Journal of Production Research, 2012. 50(8): p. 2174-2189.
38. Lee, H., K. Ryu, and Y. Cho, A framework of a smart injection molding system based on real-time data. Procedia Manufacturing, 2017. 11: p. 1004-1011.
39. Wang, S., et al., Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 2016. 12(1): p. 3159805.
40. Taking Prototypes to Production. Available from: http://www.acamp.ca/.
41. Microfluidic ChipShop. Available from: https://www.microfluidic-chipshop.com/.
42. Epigem Limited. Available from: https://www.epigem.co.uk/.
43. Schott MiniFab. Available from: https://schott-minifab.com/.
44. SIMTech Microfluidics Foundry. Available from: http://www.memsnet.org/news/.
45. Teledyne Micralyne Everywhereyoulook. Available from: http://www.micralyne.com/.
46. thinXXS Microtechnology. Available from: https://www.thinxxs.com/.
47. Romoli, L., G. Tantussi, and G. Dini, Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Optics and Lasers in Engineering, 2011. 49(3): p. 419-427.
48. Mathur, A., et al., Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Current Applied Physics, 2009. 9(6): p. 1199-1202.
49. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246.
50. Tofteberg, T., H. Amédro, and E. Andreassen, Injection molding of a diffractive optical element. Polymer Engineering & Science, 2008. 48(11): p. 2134-2142.
51. Singh, A., et al., Transparent thin thermoplastic biochip by injection-moulding and laser transmission welding. Microsystem technologies, 2013. 19(3): p. 445-453.
52. Tanzi, S., et al., Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process. Journal of Micromechanics and Microengineering, 2012. 22(11): p. 115008.
53. Matschuk, M. and N.B. Larsen, Injection molding of high aspect ratio sub-100 nm nanostructures. Journal of Micromechanics and Microengineering, 2012. 23(2): p. 025003.
54. Matschuk, M., H. Bruus, and N.B. Larsen, Nanostructures for all-polymer microfluidic systems. Microelectronic Engineering, 2010. 87(5-8): p. 1379-1382.
55. Li, J., C. Liu, and J. Peng, Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum. Journal of materials processing technology, 2008. 207(1-3): p. 163-171.
56. He, Y., et al., Micro structure fabrication with a simplified hot embossing method. RSC Advances, 2015. 5(49): p. 39138-39144.
57. Chantiwas, R., et al., Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab on a Chip, 2010. 10(23): p. 3255-3264.
58. Ziyara, A., et al., Optimization of Hot Embossing Process for Fabrication of Microfluidic Devices.
59. Chien, R.-D., Hot embossing of microfluidic platform. International communications in heat and mass transfer, 2006. 33(5): p. 645-653.
60. Kricka, L.J., et al., Fabrication of plastic microchips by hot embossing. Lab on a Chip, 2002. 2(1): p. 1-4.
61. Narasimhan, J. and I. Papautsky, Polymer embossing tools for rapid prototyping of plastic microfluidic devices. Journal of Micromechanics and Microengineering, 2003. 14(1): p. 96.
62. Pemg, B.Y., et al., Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polymers for Advanced Technologies, 2010. 21(7): p. 457-466.
63. Jena, R., et al., Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication. Journal of Micromechanics and Microengineering, 2011. 21(8): p. 085029.
64. Hurth, C., et al., Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis, 2012. 33(16): p. 2604-2611.
65. Becker, H. and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 2000. 83(1-3): p. 130-135.
66. Calvo-López, A., et al., Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer. Analytica chimica acta, 2016. 931: p. 64-69.
67. Jena, R., et al., Effect of polymer orientation on pattern replication in a micro-hot embossing process: experiments and numerical simulation. Journal of Micromechanics and Microengineering, 2011. 21(6): p. 065007.
68. Bundgaard, F., G. Perozziello, and O. Geschke, Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006. 220(11): p. 1625-1632.
69. Snakenborg, D., H. Klank, and J.P. Kutter, Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and microengineering, 2003. 14(2): p. 182.
70. Sun, Y., Y.C. Kwok, and N.-T. Nguyen, Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. Journal of Micromechanics and Microengineering, 2006. 16(8): p. 1681.
71. Liu, S., et al., Fabrication of Cyclo-olefin polymer-based microfluidic devices using CO2 laser ablation. Materials Research Express, 2018. 5(9): p. 095305.
72. Suriyage, N.U., et al. Fabrication, measurement, and modeling of electro-osmotic flow in micromachined polymer microchannels. in BioMEMS and Nanotechnology. 2004. International Society for Optics and Photonics.
73. Holmes, R., et al., Microwave bonding of poly (methylmethacrylate) microfluidic devices using a conductive polymer. Journal of Physics and Chemistry of Solids, 2011. 72(6): p. 626-629.
74. Chen, P.-C., et al., Optimization of micromilling microchannels on a polycarbonate substrate. International journal of precision engineering and manufacturing, 2014. 15(1): p. 149-154.
75. Phaneuf, C.R. and C.R. Forest. Direct, high-speed milling of polymer microchamber arrays. in Proceedings of the 25th Annual Meeting of the American Society for Precision Engineering, Atlanta, GA. 2010.
76. Huang, C., Polymeric nanofeatures of 100 nm using injection moulding for replication. Journal of Micromechanics and Microengineering, 2007. 17(8): p. 1518.
77. Shamsi, A., et al., Fabrication, sealing and hydrophilic modification of microchannels by hot embossing on PMMA substrate. RECENT ADVANCES in BIOMEDICAL & CHEMICAL ENGINEERING and MATERIALS SCIENCE, 2014: p. 138.
78. Chien, R.-D., Micromolding of biochip devices designed with microchannels. Sensors and Actuators A: Physical, 2006. 128(2): p. 238-247.
79. Rainelli, A., et al., Miniature flow-injection analysis manifold created by micromilling. Talanta, 2003. 61(5): p. 659-665.
80. Chung, C.-K., Y.-C. Lin, and G. Huang, Bulge formation and improvement of the polymer in CO2 laser micromachining. Journal of Micromechanics and Microengineering, 2005. 15(10): p. 1878.
81. Vannahme, C., et al., All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation. Optics Express, 2010. 18(24): p. 24881-24887.
82. Qi, H., et al., Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Optics and Lasers in Engineering, 2009. 47(5): p. 594-598.
83. Muck, A., et al., Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding. Analytical chemistry, 2004. 76(8): p. 2290-2297.
84. Shinohara, H., J. Mizuno, and S. Shoji, Fabrication of a microchannel device by hot embossing and direct bonding of poly (methyl methacrylate). Japanese journal of applied physics, 2007. 46(6R): p. 3661.
85. Yin, Z., et al., Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods. Nanotechnology, 2015. 26(21): p. 215302.
86. Hu, X., et al., Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding. Microfluidics and Nanofluidics, 2011. 10(6): p. 1223-1232.
87. Liu, J., et al., Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B: Chemical, 2009. 141(2): p. 646-651.
88. Ng, S.H., et al., Corona discharge assisted thermal bonding of polymer microfluidic devices. Microsystem technologies, 2010. 16(7): p. 1181-1186.
89. Roy, S., et al., Low-temperature (below T g) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: High strength, stable hydrophilic, biocompatible surfaces. Journal of Materials Chemistry, 2011. 21(38): p. 15031-15040.
90. Shah, J.J., et al., Capillarity induced solvent-actuated bonding of polymeric microfluidic devices. Analytical chemistry, 2006. 78(10): p. 3348-3353.
91. Hsu, Y.-C. and T.-Y. Chen, Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices. Biomedical microdevices, 2007. 9(4): p. 513-522.
92. Koesdjojo, M.T., Y.H. Tennico, and V.T. Remcho, Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly (methyl methacrylate) with water as a sacrificial layer. Analytical chemistry, 2008. 80(7): p. 2311-2318.
93. Ogilvie, I., et al., Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. Journal of Micromechanics and Microengineering, 2010. 20(6): p. 065016.
94. Ro, K.W., J. Liu, and D.R. Knapp, Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. Journal of chromatography A, 2006. 1111(1): p. 40-47.
95. Wallow, T.I., et al., Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab on a Chip, 2007. 7(12): p. 1825-1831.
96. Schelcher, G., et al., Cyclic olefin copolymer plasma millireactors. Lab on a Chip, 2014. 14(16): p. 3037-3042.
97. Chen, P.-C., Y.-M. Liu, and H.-C. Chou, An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel. Journal of Micromechanics and Microengineering, 2016. 26(4): p. 045003.
98. Lai, S., X. Cao, and L.J. Lee, A packaging technique for polymer microfluidic platforms. Analytical chemistry, 2004. 76(4): p. 1175-1183.
99. Liu, K., et al., PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsystem Technologies, 2017. 23(6): p. 1937-1942.
100. Goh, C., et al. Adhesive bonding of polymeric microfluidic devices. in 2009 11th Electronics Packaging Technology Conference. 2009. IEEE.
101. Riegger, L., et al., Adhesive bonding of microfluidic chips: influence of process parameters. Journal of Micromechanics and Microengineering, 2010. 20(8): p. 087003.
102. Wiedemeier, S., et al., Precision moulding of biomimetic disposable chips for droplet-based applications. Microfluidics and Nanofluidics, 2017. 21(11): p. 167.
103. Mönkkönen, K., et al., Replication of sub‐micron features using amorphous thermoplastics. Polymer Engineering & Science, 2002. 42(7): p. 1600-1608.
104. Zhang, N., et al., Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065019.
105. Lou, C.W., et al., A novel and rapid fabrication for microlens arrays using microinjection molding. Polymer Engineering & Science, 2011. 51(2): p. 391-402.
106. Chang, P.C. and S.J. Hwang, Experimental investigation of infrared rapid surface heating for injection molding. Journal of applied polymer science, 2006. 102(4): p. 3704-3713.
107. Park, S., et al., Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper. eXPRESS Polymer Letters, 2011. 5(11): p. 950-958.
108. Zhang, N., et al., Towards nano-injection molding. Materials today, 2012. 15(5): p. 216-221.
109. Hattori, S., et al., Rapid injection molding of high-aspect-ratio nanostructures. Microelectronic Engineering, 2010. 87(5-8): p. 1546-1549.
110. Lin, Y.H., et al., Flatness and microstructure of a light guide plate fabricated by microinjection molding. Polymer Engineering & Science, 2013. 53(1): p. 212-218.
111. Lee, U.N., et al., Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab on a Chip, 2018. 18(3): p. 496-504.
112. Wimberger-Friedl, R., Injection molding of sub-(mu) m grating optical elements. Journal of injection molding technology, 2000. 4(2): p. 78.
113. Lucchetta, G., et al., Influence of mould thermal properties on the replication of micro parts via injection moulding. Procedia CIRP, 2012. 2: p. 113-117.
114. Yoon, S.-h., et al. Critical factors for nanoscale injection molding. in Smart Medical and Biomedical Sensor Technology IV. 2006. International Society for Optics and Photonics.
115. Zhu, X., T.W. Simon, and T. Cui, Hot embossing at viscous state to enhance filling process for complex polymer structures. Microsystem technologies, 2012. 18(3): p. 257-265.
116. Çoğun, F., E. Yıldırım, and M. Sahir Arikan, Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 2017. 32(16): p. 1838-1844.
117. Juang, Y.J., L.J. Lee, and K.W. Koelling, Hot embossing in microfabrication. Part I: Experimental. Polymer Engineering & Science, 2002. 42(3): p. 539-550.
118. Becker, H. and U. Heim, Polymer hot embossing with silicon master structures. Sens Mater, 1999. 11(11): p. 297-304.
119. Lin, M.-C., et al., Study on the replication accuracy of polymer hot embossed microchannels. International Communications in Heat and Mass Transfer, 2013. 42: p. 55-61.
120. Brown, L., et al., Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab on a Chip, 2006. 6(1): p. 66-73.
121. Martynova, L., et al., Fabrication of plastic microfluid channels by imprinting methods. Analytical chemistry, 1997. 69(23): p. 4783-4789.
122. Buch, J.S., et al., DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Analytical chemistry, 2004. 76(4): p. 874-881.
123. Bhattacharyya, A. and C.M. Klapperich, Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Analytical Chemistry, 2006. 78(3): p. 788-792.
124. Ueno, K., H.-B. Kim, and N. Kitamura, Characteristic Electrochemical Responses of Polymer Microchannel− Microelectrode Chips. Analytical chemistry, 2003. 75(9): p. 2086-2091.
125. Wang, Y.X., et al., Electrospray interfacing of polymer microfluidics to MALDI‐MS. Electrophoresis, 2005. 26(19): p. 3631-3640.
126. Lu, C., L.J. Lee, and Y.J. Juang, Packaging of microfluidic chips via interstitial bonding technique. Electrophoresis, 2008. 29(7): p. 1407-1414.
127. Kawazumi, H., et al., Observation of fluidic behavior in a polymethylmethacrylate-fabricated microchannel by a simple spectroscopic analysis. Lab on a Chip, 2002. 2(1): p. 8-10.
128. Chen, X., J. Shen, and M. Zhou, Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. Journal of Micromechanics and Microengineering, 2016. 26(10): p. 107001.
129. Genna, S., et al., An experimental study on the surface mechanisms formation during the laser milling of PMMA. Polymer Composites, 2015. 36(6): p. 1063-1071.
130. McCann, R., et al., Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd: YAG laser ablation. Applied Surface Science, 2016. 387: p. 603-608.
131. Yuan, D. and S. Das, Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO 2 laser ablation. Journal of applied physics, 2007. 101(2): p. 024901.
132. Bai, X., et al., Passive conductivity detection for capillary electrophoresis. Analytical chemistry, 2004. 76(11): p. 3126-3131.
133. Nie, Z. and Y.S. Fung, Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. Electrophoresis, 2008. 29(9): p. 1924-1931.
134. Tan, H.Y., et al., A lab-on-a-chip for detection of nerve agent sarin in blood. Lab on a Chip, 2008. 8(6): p. 885-891.
135. Dhouib, K., et al., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab on a Chip, 2009. 9(10): p. 1412-1421.
136. Bhagat, A.A.S., et al., Re-usable quick-release interconnect for characterization of microfluidic systems. Journal of micromechanics and microengineering, 2006. 17(1): p. 42.
137. Chen, Z., et al., Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis, 2003. 24(18): p. 3246-3252.
138. Arroyo, M., et al., Novel all-polymer microfluidic devices monolithically integrated within metallic electrodes for SDS-CGE of proteins. Journal of Micromechanics and Microengineering, 2007. 17(7): p. 1289.
139. Yao, L., et al., Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomedical microdevices, 2005. 7(3): p. 253-257.
140. Shadpour, H., et al., Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Analytical chemistry, 2007. 79(3): p. 870-878.
141. Truckenmuller, R., et al. A new bonding process for polymer micro-and nanostructures based on near-surface degradation. in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. 2004. IEEE.
142. Wu, Z., et al., Polymer microchips bonded by O2‐plasma activation. Electrophoresis, 2002. 23(5): p. 782-790.
143. Wang, Y., et al., A high‐performance polycarbonate electrophoresis microchip with integrated three‐electrode system for end‐channel amperometric detection. Electrophoresis, 2008. 29(9): p. 1881-1888.
144. Ahn, C.H., et al., Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE, 2004. 92(1): p. 154-173.
145. Abgrall, P., L.-N. Low, and N.-T. Nguyen, Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab on a Chip, 2007. 7(4): p. 520-522.
146. Kettner, P., et al. New results on plasma activated bonding of imprinted polymer features for bio MEMS applications. in Journal of Physics: Conference Series. 2006. IOP Publishing.
147. Bhattacharyya, A. and C.M. Klapperich, Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab on a Chip, 2007. 7(7): p. 876-882.
148. Sun, X., et al., Rapid prototyping of poly (methyl methacrylate) microfluidic systems using solvent imprinting and bonding. Journal of Chromatography a, 2007. 1162(2): p. 162-166.
149. Ng, S., et al., Thermally activated solvent bonding of polymers. Microsystem Technologies, 2008. 14(6): p. 753-759.
150. Kim, S., J. Jeong, and J. Youn, Nanopattern insert molding. Nanotechnology, 2010. 21(20): p. 205302.
151. Su, Y.-C., J. Shah, and L. Lin, Implementation and analysis of polymeric microstructure replication by micro injection molding. Journal of Micromechanics and Microengineering, 2003. 14(3): p. 415.
152. Liou, A.-C. and R.-H. Chen, Injection molding of polymer micro-and sub-micron structures with high-aspect ratios. The International Journal of Advanced Manufacturing Technology, 2006. 28(11-12): p. 1097-1103.
153. Chen, S., et al., Preliminary study of polymer melt rheological behavior flowing through micro-channels. International Communications in Heat and Mass Transfer, 2005. 32(3-4): p. 501-510.
154. Chien, R.-D., W.-R. Jong, and S.-C. Chen, Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect. Journal of Micromechanics and Microengineering, 2005. 15(8): p. 1389.
155. Lin, H.-Y., C.-H. Chang, and W.-B. Young, Experimental and analytical study on filling of nano structures in micro injection molding. International Communications in Heat and Mass Transfer, 2010. 37(10): p. 1477-1486.
156. Stormonth-Darling, J., et al., Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling. Journal of Micromechanics and Microengineering, 2014. 24(7): p. 075019.
157. Ito, H., et al., Polymer structure and properties in micro-and nanomolding process. Current Applied Physics, 2009. 9(2): p. e19-e24.
158. Yang, C., et al., Replication characterization in injection molding of microfeatures with high aspect ratio: Influence of layout and shape factor. Polymer Engineering & Science, 2011. 51(5): p. 959-968.
159. Gava, A. and G. Lucchetta, On the performance of a viscoelastic constitutive model for micro injection moulding simulations. Express Polymer Letters, 2012. 6(5).
160. Chou, S.Y. and P.R. Krauss, Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering, 1997. 35(1-4): p. 237-240.
161. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub‐25 nm vias and trenches in polymers. Applied physics letters, 1995. 67(21): p. 3114-3116.
162. Studer, V., A. Pepin, and Y. Chen, Nanoembossing of thermoplastic polymers for microfluidic applications. Applied physics letters, 2002. 80(19): p. 3614-3616. |