博碩士論文 107451012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.188.15.246
姓名 簡亦楚(Yi-Chu Chien)  查詢紙本館藏   畢業系所 企業管理學系在職專班
論文名稱 應用數據分析改進製程良率之研究
(The Application of Data Analytics on Yield Rate)
相關論文
★ 以第四方物流經營模式分析博連資訊科技股份有限公司★ 探討虛擬環境下隱性協調在新產品導入之作用--以電子組裝業為例
★ 動態能力機會擷取機制之研究-以A公司為例★ 探討以價值驅動之商業模式創新-以D公司為例
★ 物聯網行動支付之探討-以Apple Pay與支付寶錢包為例★ 企業資訊方案行銷歷程之探討-以MES為例
★ B2C網路黏著度之探討-以博客來為例★ 組織機制與吸收能力關係之研究-以新產品開發專案為例
★ Revisit the Concept of Exploration and Exploitation★ 臺灣遠距醫療照護系統之發展及營運模式探討
★ 資訊系統與人力資訊科技資源對供應鏈績效影響之研究-買方依賴性的干擾效果★ 資訊科技對知識創造影響之研究-探討社會鑲嵌的中介效果
★ 資訊科技對公司吸收能力影響之研究-以新產品開發專案為例★ 探討買賣雙方鑲嵌關係影響交易績效之機制 ─新產品開發專案為例
★ 資訊技術運用與協調能力和即興能力 對新產品開發績效之影響★ 團隊組成多元性影響任務衝突機制之研究─ 以新產品開發專案團隊為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 資訊技術絕對是企業取得競爭優勢功不可沒的角色。不僅是將人工轉為機器自動化、 將紙本文件轉為電子數據等數位化(Digitalization)動作,而是運用資訊技術進行整合管理、 數據分析、決策輔助等提升商業價值的行為。更因如此,近期多數企業在思考公司未來 成長發展時,都開始將數位轉型(Digital Transformation) 考慮在內。
在眾多的數位技術中,近幾年機器學習(Machine Learning)發展蓬勃,在各領域皆有 很好的成效,如客製化行銷、醫療診斷輔助、語音及圖形識別。引領了許多企業紛紛投 入資源,無論是與資料科學專家合作抑或自行訓練資訊專業人才。但是該如何成功導入 機器學習至企業當中,企業所面臨的困難與挑戰是什麼?特別是以中小企業在資源與資 金使用的限制條件下,他們該如何有效的準備及運用?
本研究以如何運用機器學習並實作數據分析,進而改進製程良率為目標。採用台灣 某製造高爾夫球桿頭公司的生產數據資料,搭配決策樹演算法(Decision Tree)提出對應 之訓練模型與評估方式,並根據生產數據之訓練結果建立規則,進而輔助企業調整生產 過程的製程參數及控制生產過程的變因。
摘要(英) Information technology plays the critical role in business success. Companies gain competitive advantage by adopt IT strategies. Not only automation for manpower reduction, paper to digital transformation. Companies use information technology to integrated business management, data analytics and decision supporting for increase business value. Therefore, digital transformation strategy becomes the most important plan for many companies.
These days, machine learning is the most popular and important technology. It is evolving at such a rapid pace, enabling great results in many areas. Such as marketing personalization, clinical decision support, voice and image recognition. Machine learning adoption is increasing in many industries. But, what are the difficulties and challenges firms face? Especially, the small and medium-sized enterprises which with the resource limitation.
The research focus on build the application of data analytics on yield rate. Use the golf club head manufacturing process data which provided by an anonymous company. The research builds the training model and evaluation method with decision tree algorithm. According to the training result, provides the suggestion which help the firm to adjust manufacturing parameters and avoid producing defective products.
關鍵字(中) ★ 數據分析
★ 良率改善
★ 機器學習
★ 決策樹
關鍵字(英) ★ Data Analytics
★ Yield Improvement in Manufacturing
★ Machine Learning
★ Decision Tree
論文目次 摘要 .............................................................................................................................................I
ABSTRACT .............................................................................................................................. II
目錄 .......................................................................................................................................... III
圖目錄 ....................................................................................................................................... V
表目錄 .................................................................................................................................... VII
一、緒論 .................................................................................................................................... 1
1-1 研究動機與目的............................................................................................................ 1
1-2 論文架構........................................................................................................................ 3
二、文獻探討 ............................................................................................................................ 4
2-1 決策樹演算法................................................................................................................ 4
2-2 評估指標........................................................................................................................ 7
2-3 資料前處理.................................................................................................................. 10
三、研究設計與方法 .............................................................................................................. 11
3-1 高爾夫球桿頭生產流程簡介...................................................................................... 12
3-2 資料分析...................................................................................................................... 15
3-2-1 資料前處理步驟說明 ...........................................................................................15
3-2-2 Y 值的假設..........................................................................................................18
3-2-3 分析資料應用範圍 ...............................................................................................19
3-3 訓練模型設計.............................................................................................................. 23 3-3-1 訓練手法 ...............................................................................................................23
3-3-2 評估指標 ...............................................................................................................25
3-3-3 參數設定 ...............................................................................................................26
3-4 規則建立...................................................................................................................... 27
四、實證分析 .......................................................................................................................... 30
4-1 資料描述...................................................................................................................... 30
4-2 實驗結果與討論.......................................................................................................... 32
4-2-1 應用範圍訓練結果之比較 ...................................................................................32
4-2-2 瑕疵定義方法訓練結果之比較 ...........................................................................49
4-2-3 過抽樣法(Oversampling)訓練結果之比較..........................................................52
五、結論及未來展望 .............................................................................................................. 54
參考文獻 .................................................................................................................................. 56
參考文獻 [1] Thorsten Wuest, Daniel Weimer, Christopher Irgens & Klaus-Dieter Thoben, “Machine learning in manufacturing: advantages, challenges, and applications”, Production & Manufacturing research: An Open Access Journal, 2016 Vol 4, no. 1, pp. 23–45, June 2016.
[2] Anitesh Barua, Charles H. Kriebel, Tridas Mukhopadhyay, “Information Technologies and Business Value: An Analytic and Empirical Investigation”, Information Systems Research, Vol 6, No. 1 (MARCH 1995), pp. 3-23, March 1995.
[3] Paul L. Drnevich, David C. Croson, “Information Technology and Business-Level Strategy: Toward an Integrated Theoretical Perspective”, MIS Quarterly, Vol. 37 No. 2, pp. 483-509, June 2013.
[4] 蜂行資本與台灣人工智慧學校:2021 台灣企業 AI 趨勢報告。2021 年 3 月,取自 https://www.hiveventures.io/sotea。
[5] Gartner, 2019.08.05, “Gartner Says AI Augmentation Will Create $2.9 Trillion of Business Value in 2021”, Accessed from https://www.gartner.com/en/newsroom/press- releases/2019-08-05-gartner-says-ai-augmentation-will-create-2point9-trillion-of- business-value-in-2021
[6] Salvador García, Julián Luengo, Francisco Herrera, “Data Preprocessing in Data Mining”, Spinger, August 2014.
[7] S. B. Kotsiantis, D. Kanellopoulos and P. E. Pintelas, “Data Preprocessing for Supervised Leaning”, International Journal of Computer Science, Vol 1, No 1, 2006.
[8] Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto and Sandro Ridella, “The ‘K’ in K-fold Cross Validation”, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, p.441-446, April 2012.
[9] Sebastian Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning”, arXiv, version 3, Nov 2020.
[10] Ron Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection”, IJCAI (International Joint Conference on Artificial Intelligence), pp.1137-1145, 1995.
[11] Andrius Vabalas, Emma Gowen, Ellen Poliakoff, Alexander J. Casson, “Machine learning algorithm validation with a limited sample size”, PLOS ONE, November 2019.
[12] 諶家蘭,「企業導入大數據分析與應用之概述」,會計研究月刊,(355),54-58 頁,June 2015。
[13] 余承叡、盧冠宇、吳維文、丁士翔,「邁向工業 4.0- 製造業的大數據分析應用實 例」,電工通訊季刊,2016 第 2 季,68-77 頁,June 2016。
[14] Laszlo Monostori , H. Van Brussel, “Machine Learning Approaches to Manufacturing”, CIRP Annals - Manufacturing Technology, Vol 45/2, pp. 675-712, January 1996.
[15] 經濟部中小企業處,2019 中小企業白皮書,取自 https://book.moeasmea.gov.tw/book/doc_detail.jsp?pub_SerialNo=2019A01634, November 2019。
[16] 歐宜佩,陳信宏,「近期數位轉型發展趨勢之觀察」,經濟前瞻,178 期, 94 – 99 頁,July 2018。
[17] IDC,2020 亞太地區中小企業數位化成熟度研究,思科 CISCO,取自 https://www.cisco.com/c/dam/global/zh_tw/solutions/small- business/digitalmaturity/cisco-smb-digital-maturity-ebook.pdf。
[18] Hsinchun Chen, Roger H. L. Chiang and Veda C. Storey, “Business Intelligence and Analytics: From Big Data to Big Impact”, MIS Quarterly, Vol 36, No. 4, pp. 1165-1188, December 2012.
[19] David Kiron, Pamela Kirk Prentice and Renee Boucher Ferguson, “The Analytics Mandate”, MIT Sloan Management Review, May 2014
[20] ibi, The Business Value of Trusted Data, Accessed from https://www.ibi.com/wp- content/uploads/2020/06/eb-business-value-trusted-data-single-page-ibi.pdf, June 2020.
[21] M. I. Jordan, T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects”, Science, Vol 349, Issue 6245, pp. 255-260, July 2015.
[22] Tom Fawcett, “An introduction to ROC analysis”, ELSEVIER Pattern Recognition Letters, Vol 27, Issue 8, pp 861-874, June 3006.
[23] Jin Huang and Charles X. Ling , “Using AUC and accuracy in evaluating learning algorithms”, IEEE Transactions On Knowledge And Data Engineering, Vol 17, NO. 3, pp. 299 – 310, January 2005.
[24] Jerome Fan , Suneel Upadhye, Andrew Worster, “Understanding receiver operating characteristic (ROC) curves”, Canadian Journal of Emergency Medicine, Vol 8, Issue 1, pp. 19-20, May 2015.
[25] Lior Rokach, Oded Maimon, Data Mining with Decision Trees: Theory and Applications, World Scientific, 2008.
[26] Priya Pedamkar, Decision Tree Algorithm, EDUCBA, Accessed from https://www.educba.com/decision-tree-algorithm/
[27] Krume Nikoloski , “The Role of Information Technology in the Business Sector”, International Journal of Science and Research (IJSR), Vol 3 Issue 12, pp 303-309, December 2014.
[28] Robert R. Sokal, “Classification: Purposes, principles, progress, prospects”. Science Vol 185, pp. 1115–1123. September 1974.
[29] Robert Susmaga, “Confusion Matrix Visualization”, Intelligent Information Processing and Web Mining, Springer, May 2004
[30] Devopedia. "Confusion Matrix." Version 6, 2019.08.20, Accessed from https://devopedia.org/confusion-matrix
[31] Francisco J. Valverde-Albacete, Carmen Peláez-Moreno, “100% Classification Accuracy Considered Harmful: The Normalized Information Transfer Factor Explains the Accuracy Paradox”, PLOS ONE, Vol 9, Issue1, January 2014
[32] Nitesh Chawla, Kevin Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique”, Journal of Artificial Intelligence Research, Vol 16. pp. 321-357, June 2006.
指導教授 陳炫碩 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明