博碩士論文 104682601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.19.64.3
姓名 達斯(Prabodha Das)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣南部外海、北部馬尼拉增積岩體之墾丁高原地形演育、沉積以及海洋作用研究
(Morphological evolution, sedimentary and oceanographic processes around Kenting Plateau in the northern Manila accretionary wedge, offshore southern Taiwan)
相關論文
★ 台灣河流系統中的鉬同位素:它們對季節效應、岩石類型和風化模式變化的影響★ 台灣周遭近代深海細粒沉積物之源岩區研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 墾丁高原為橫跨台灣南部的馬尼拉北部增積岩體之地形峰頂,其特徵是不尋常的低地勢表面,水深約為400-700 米。本研究於墾丁高原區域內收集許多數據與資料,包含多音束水深、反射震測、聲學多普勒流譜剖面(ADCP) 、聲學分束測深(EK60)、海床沉積物等。以上述資料來佐證墾丁高原有明顯的侵蝕作用,並了解海底侵蝕如何影響地質時間尺度上之形態演變。墾丁高原最顯著的特徵是藉由多音束水深所顯示的 3 公里 x 7 公里之豆形平坦高架平台(本研究命名為黑潮海丘)。反射震測資料顯示,大部分的墾丁高原海床下幾乎沒有反射,海床也被侵蝕截斷,特別是在高原的東半部,此現象證明了該區域被廣泛的侵蝕。從高原頂部採集的礫石,其P波速度範圍為介於 2.2 至 4 公里/秒間。與附近盆地的鑽井數據對比,推測該礫石母岩的埋藏深度為海床底下約2~4公里,此說明了母岩受高原的侵蝕而被抬升且形成礫石。沉積物岩心的含砂量隨著遠離高原而減少,說明此區域的沉積物傳輸為高能量沉積,從而在高原上堆積粗粒沉積物,並帶走細顆粒沉積物。與黑潮平行且向高原北方遷移之沙丘的現象也證明了該地區活躍的沉積物搬運現象。從 ADCP 數據中觀測到的黑潮流速非常高,在黑潮海丘頂部達到 1.8 m/s(在東南方)。因此,我們認為強烈侵蝕作用乃由黑潮所引起。藉由MD97- 2145 的沉積物岩心分析,可發現低位海平面時期(20,000-12,000 yrs BP)的沉積速率較高且粒度較粗,代表與融冰期(<12,000 yrs BP)相比,冰期的侵蝕作用更為強烈。
高原北部有眾多的泥火山與泥貫入體發育,而高原南部海床主要由侵蝕面和岩化岩石組成。其中高原北部的多處泥火山和泥貫入體(>10個),形成不規則的地形,與高原南部較為平整的地形,形成了鮮明的對比。泥火山的底部和頂部分別位於海平面以下約 450-900 m 和 260-400 m 之間。一些泥火山也顯示8~20 度之陡坡,表明其泥流非常活躍且粘稠。其中EK60 數據也顯示某一泥火山頂部有200公尺高的噴氣柱,代表有些泥火山是活躍的。另外,研究區域內也發現幾座泥火山有崩塌現象,並有被高原上方強勁黑潮侵蝕的現象。研究區泥貫入體和泥火山的形成與沈積層超壓、擠壓構造應力和含氣流體有關。墾丁高原的隆升主要因構造壓所作用所形成,部分原因則是侵蝕所引起的地殼回彈。海底侵蝕在整個高原占主導地位,與貫入體侵入一起控制著高原的地貌發育。
摘要(英) The Kenting Plateau is characterized by unusual low relief surfaces that straddle the topographic crest of the northern Manila accretionary prism off southern Taiwan at 400-700 m water depth. Multibeam bathymetric data, reflection seismic data, Acoustic Doppler Current Profiler (ADCP) data, Acoustic Split-Beam Echosounder (EK60) data, surface grab samples, and sediment cores were collected in and around the Plateau to identify evidence of erosion in the Kenting Plateau and understand how the morphological evolution has been influenced by submarine erosion over geological time scales. The most distinctive feature on the Kenting Plateau is a 3 km x 7 km bean-shaped flat elevated platform (Kuroshio Knoll) revealed by multibeam bathymetry. Seismic data show almost no reflections beneath the seafloor and erosional truncations at the seafloor, especially in the Plateau′s eastern half, evidencing widespread erosion. The P-wave velocity of the gravels recovered from the top of the Plateau ranges from 2.2 to 4 km/s. After comparing the velocity with the borehole data from nearby basin the burial depth of the parent rocks was found to be around 2 to 4 km below the seafloor, indicating that the parent rocks have been uplifted and gravels were formed due to erosion of the Plateau. Sand content of the sediment cores decreases away from the Plateau, suggesting that sediment transport is effective in this area with high energy deposition, thereby accumulating coarse sediments on the Plateau and removing fine particles away from it. The presence of a dune field migrating northward of the Plateau, parallel to Kuroshio Current also evidences active sediment transport in the area. The Kuroshio Current velocity observed from the ADCP data is very high, reaches up to 1.8 m/s on top of the Kuroshio Knoll (SE domain). We thus interpret that the observed intense erosion is caused by the Kuroshio Current. The higher sedimentation rate and coarser in grain size during sea level lowstand (20,000-12,000 yrs BP) suggests that the erosion was more intense during the glacial period in compared to that of deglacial period (< 12,000 yrs BP) as seen from the MD97-2145 core.

There is a prevalent development of mud volcanoes and mud diapirs in the northern part of the plateau whereas the southern part is mostly comprised of erosional surfaces with lithified rocks. Numerous mud volcanoes and mud diapirs (>10) are found in the northern domain of the plateau, leading to an irregular topography which is in sharp contrast with the southern domain. The base and top of the mud volcanoes range from 450-900 m and 260-400 m, respectively, below the sea level. A few mud volcano edifices show abrupt slope ranging from ~8 to ~20 degree suggesting the mud flow is active and viscous. EK-60 data demonstrate a 200 m gas flare through the top of one of the mud volcanos, revealing that some of the mud volcanos are active. A few mud volcanos are collapsed and further eroded away by the strong Kuroshio current around the plateau. The formation of mud diapirs and volcanoes in the study area is attributed to the overpressure in sedimentary layers, compressional tectonic forces and gas-bearing fluids. The uplift of the Kenting Plateau is partially due to isostatic rebound caused by sediment removal through erosion and compression of the accretionary wedge. Submarine erosion is predominant throughout the Plateau, and along with the diapiric intrusion, it controls the geomorphology of the Plateau.
關鍵字(中) ★ 黑潮
★ 海底侵蚀
★ 台湾
關鍵字(英)
論文目次 Abstract in Chinese i
Abstract in English iii
Acknowledgements v
List of Figures x
Chapter 1: Introduction 1
1.1 General background and purpose of PhD Thesis 1
1.2 Scientific questions 3
1.2.1 Impact of oceanic current on the Plateau and resulting morphological evolution 3
1.2.2 Characterization and identification of mud diapirism and mud volcanism in the study area 4
1.3 Regional, geological, and morphological setting 4
1.4 Oceanographic Settings 7
1.5 Data sources 14
1.6 Structure and contents of the Thesis 15
Chapter 2: Deep-sea submarine erosion by Kuroshio Current in the Kenting Plateau, offshore southern Taiwan 16
2.1 Introduction and background 16
2.2 Materials and methods 19
2.2.1 Bathymetric data for seafloor characterization 20
2.2.2 : Seismic reflection data for seafloor and sub-seafloor characterization 22
2.2.3 Acoustic Doppler Current Profiler (ADCP) 22
2.2.4 Sediment cores and grab samples 23
2.2.5 Radiocarbon dating and age reconstruction 27
2.3 Results 27
2.3.1 Submarine geomorphology of the Kenting Plateau 27
2.3.1.1 Depositional basins 27
2.3.2 Sediment characteristics 33
2.3.3 Chronology and sedimentation rates 36
2.3.4 Measured oceanic currents 36
2.4 Discussion 38
2.4.1 Oceanic circulation around the Plateau 39
2.4.2 Submarine erosion and deposition model 40
2.4.3 Morphological evolution of Kuroshio Knoll 50
Chapter 3: Distribution and characterization of the mud diapir and mud volcanoes in the Kenting Plateau, offshore southern Taiwan 56
3.1 Introduction and background 56
3.2 Materials and methods 58
3.2.1 Bathymetric data for seafloor characterization 59
3.3 Results 65
3.3.1 Morpho-acoustic analysis of the mud volcanos 65
3.3.2 Mud diapirs 79
3.3.3 Gas seepage 90
3.4 Discussion 92
3.4.1 Characteristics of mud volcanos and material transportation 92
3.4.2 Processes responsible for mud diapirs 93
3.4.3 Mud diapiric and mud volcano controls on morphological evolution of the Plateau 96
Chapter 4: Conclusions and outlook 97
Publications 100
Bibliography 101
參考文獻 Adams, E.W., Kenter, J.A., Verwer, K., Playton, T., Harris, P., 2013. So different, yet so similar: comparing and contrasting siliciclastic and carbonate slopes. Deposits, Architecture, Controls of Carbonate Margin, Slope, Basinal Settings: SEPM, Special Publication 105, 14-25.
Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., 2015a. The formation and fate of internal waves in the South China Sea. Nature 521, 65-69.
Alford, M.H., Peacock, T., MacKinnon, J.A., Nash, J.D., Buijsman, M.C., Centurioni, L.R., Chao, S.-Y., Chang, M.-H., Farmer, D.M., Fringer, O.B., 2015b. The formation and fate of internal waves in the South China Sea. Nature 521, 65-69.

Audet, D.M., 1995. Mathematical modelling of gravitational compaction and clay dehydration in thick sediment layers. Geophysical Journal International 122, 283-298.
Audet, D.M., 1996. Compaction and overpressuring in Pleistocene sediments on the Louisiana Shelf, Gulf of Mexico. Marine Petroleum Geology 13, 467-474.
Bintanja, R., Van De Wal, R.S., Oerlemans, J., 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125-128.
Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth surface processes Landforms 26, 1237-1248.
Bøe, R., Skarðhamar, J., Rise, L., Dolan, M.F., Bellec, V.K., Winsborrow, M., Skagseth, Ø., Knies, J., King, E.L., Walderhaug, O., 2015. Sandwaves and sand transport on the Barents Sea continental slope offshore northern Norway. Marine Petroleum Geology 60, 34-53.
Brown, K., Westbrook, G., 1988. Mud diapirism and subcretion in the Barbados Ridge accretionary complex: the role of fluids in accretionary processes. Tectonics 7, 613-640.
Brown, K.M., 1990. The nature and hydrogeologic significance of mud diapirs and diatremes for accretionary systems. Journal of Geophysical Research: Solid Earth 95, 8969-8982.
Buijsman, M.C., Klymak, J.M., Legg, S., Alford, M.H., Farmer, D., MacKinnon, J.A., Nash, J.D., Park, J.-H., Pickering, A., Simmons, H., 2014. Three-dimensional double-ridge internal tide resonance in Luzon Strait. Journal of Physical Oceanography 44, 850-869.
Camerlenghi, A., Cita, M., Della Vedova, B., Fusi, N., Mirabile, L., Pellis, G., 1995. Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Marine Geophysical Researches 17, 115-141.
Cartwright, J., Huuse, M., Aplin, A., 2007. Seal bypass systems. AAPG bulletin 91, 1141-1166.
Centurioni, L.R., Niiler, P.P., Lee, D.-K., 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography 34, 113-121.
Chang, C.-P., Angelier, J., Huang, C.-Y., 2009. Evolution of subductions indicated by mélanges in Taiwan, Subduction zone geodynamics. Springer, pp. 207-225.

Chang, C.-P., Angelier, J., Lee, T.-Q., Huang, C.-Y., 2003. From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics
361, 61-82.
Chen, S.-C., Hsu, S.-K., Tsai, C.-H., Ku, C.-Y., Yeh, Y.-C., Wang, Y., 2010. Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches 31, 133-147.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014a. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences 92, 201-214.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., 2014b. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences 92, 201-214.

Chern, C.-S., Wang, J., 1998. A numerical study of the summertime flow around the Luzon Strait. Journal of Oceanography 54, 53-64.
Chiu, J.-K., Wei-Hao, T., Liu, C.-S., 2006. Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. TAO: Terrestrial, Atmospheric Oceanic Sciences 17, 703.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, M.-J., Chen, M.-C., Stark, C.P., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 426, 648-651.
Damuth, J.E., 1980. Use of high-frequency (3.5–12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: a review. Marine Geology 38, 51-75.
Das, P., Lin, A.T.-S., Chen, M.-P.P., Miramontes, E., Liu, C.-S., Huang, N.-W., Kung, J., Hsu, S.-K., Pillutla, R.K., Nayak, K., 2021. Deep-sea submarine erosion by the Kuroshio Current in the Manila accretionary prism, offshore Southern Taiwan. Tectonophysics 807, 228813.

Dimitrov, L.I., 2002. Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews 59, 49-76.
Doo, W.B., Lo, C.L., Kuo‐Chen, H., Brown, D., Hsu, S.K., 2015. Exhumation of serpentinized peridotite in the northern Manila subduction zone inferred from forward gravity modeling. Geophysical Research Letters 42, 7977-7982.
Eakin, D.H., McIntosh, K.D., Van Avendonk, H., Lavier, L., Lester, R., Liu, C.S., Lee, C.S., 2014. Crustal‐scale seismic profiles across the Manila subduction zone: The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research: Solid Earth 119, 1-17.
Fener, M., 2011. The effect of rock sample dimension on the P-wave velocity. Journal of Nondestructive Evaluation 30, 99-105.
García, M., Hernández-Molina, F.J., Alonso, B., Vázquez, J.T., Ercilla, G., Llave, E., Casas, D., 2016. Erosive sub-circular depressions on the Guadalquivir Bank (Gulf of Cadiz): interaction between bottom current, mass-wasting and tectonic processes. Marine Geology 378, 5-19.
Hernández-Molina, F., Campbell, S., Badalini, G., Thompson, P., Walker, R., Soto, M., Conti, B., Preu, B., Thieblemont, A., Hyslop, L., 2018. Large bedforms on contourite terraces: Sedimentary and conceptual implications. Geology 46, 27-30.
Hovland, M., Curzi, P.V., 1989. Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Marine petroleum geology 6, 161-169.
Hsin, Y.C., Qiu, B., Chiang, T.L., Wu, C.R., 2013. Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. Journal of Geophysical Research: Oceans 118, 4305-4316.
Hsu, H.-H., Liu, C.-S., Yu, H.-S., Chang, J.-H., Chen, S.-C., 2013a. Sediment dispersal and accumulation in tectonic accommodation across the Gaoping Slope, offshore Southwestern Taiwan. Journal of Asian Earth Sciences 69, 26-38.
Hsu, S.-K., Wang, S.-Y., Liao, Y.-C., Yang, T.F., Jan, S., Lin, J.-Y., Chen, S.-C., 2013b. Tide-modulated gas emissions and tremors off SW Taiwan. Earth Planetary Science Letters 369, 98-107.
Huang, C.H., 2002. A study of sea surface temperature since the last glacial period in the Bashi Strait from the MD972145 core. MS Theis, Institute of Oceanography, national Taiwan University.

Huh, C.-A., Lin, H.-L., Lin, S., Huang, Y.-W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: a tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems 76, 405-416.
Issler, D.J.A.b., 1992. A new approach to shale compaction and stratigraphic restoration, Beaufort-Mackenzie Basin and Mackenzie Corridor, northern Canada. AAPG bulletin 76, 1170-1189.
Jan, S., Yang, Y.J., Wang, J., Mensah, V., Kuo, T.H., Chiou, M.D., Chern, C.S., Chang, M.H., Chien, H., 2015. Large variability of the Kuroshio at 23.75 N east of Taiwan. Journal of Geophysical Research: Oceans 120, 1825-1840.
Jia, Y., Tian, Z., Shi, X., Liu, J.P., Chen, J., Liu, X., Ye, R., Ren, Z., Tian, J., 2019. Deep-sea sediment resuspension by internal solitary waves in the northern South China Sea. Scientific reports 9, 1-8.
Jiang, H., Björck, S., Ran, L., Huang, Y., Li, J., 2006. Impact of the Kuroshio Current on the South China Sea based on a 115 000 year diatom record. Journal of Quaternary Science: Published for the Quaternary Research Association 21, 377-385.
Kobayashi, K., Ashi, J., Boulegue, J., Cambray, H., Chamot-Rooke, N., Fujimoto, H., Furuta, T., Iiyama, J., Koizumi, T., Mitsuzawa, K., 1992. Deep-tow survey in the KAIKO-Nankai cold seepage areas. Earth planetary science letters 109, 347-354.
Kopf, A., Robertson, A., Clennell, M., Flecker, R., 1998. Mechanisms of mud extrusion on the Mediterranean Ridge Accretionary Complex. Geo-Marine Letters 18, 97-114.
Kopf, A., Robertson, A., Volkmann, N., 2000. Origin of mud breccia from the Mediterranean Ridge accretionary complex based on evidence of the maturity of organic matter and related petrographic and regional tectonic evidence. Marine Geology 166, 65-82.
Kopf, A.J., 2002. Significance of mud volcanism. Reviews of geophysics 40, 2-1-2-52.
Korup, O., Densmore, A.L., Schlunegger, F., 2010. The role of landslides in mountain range evolution. Geomorphology 120, 77-90.
Korup, O., Schlunegger, F., 2009. Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth Planetary Science Letters 278, 278-285.
Krastel, S., Spiess, V., Ivanov, M., Weinrebe, W., Bohrmann, G., Shashkin, P., Heidersdorf, F., 2003. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea. Geo-Marine Letters 23, 230-238.
Lambeck, K., Chappell, J., 2001. Sea level change through the last glacial cycle. Science 292, 679-686.
Lan, Y.-C., Shih, C.-t., Lee, M.-A., Shieh, H.-Z., 2004. Spring distribution of copepods in relation to water masses in the northern Taiwan Strait. zoological studies 43, 332-343.
León, R., Somoza, L., Medialdea, T., González, F., Díaz-del-Río, V., Fernández-Puga, M., Maestro, A., Mata, M., 2007. Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates. Geo-Marine Letters 27, 237-247.
Lester, R., McIntosh, K., Van Avendonk, H.J., Lavier, L., Liu, C.-S., Wang, T.-K., 2013. Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan. Earth Planetary Science Letters 375, 430-440.
Li, L., Nowlin Jr, W.D., Jilan, S., 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers 45, 1469-1482.
Li, L., Wu, B.-y., 1989. A Kuroshio loop in South China Sea?—on circulations of the north-eastern South China Sea. J Oceanogr Taiwan Strait 8, 89-95.
Liang, W.-D., Tang, T., Yang, Y., Ko, M., Chuang, W.-S., 2003. Upper-ocean currents around Taiwan. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1085-1105.
Liang, W.D., Yang, Y.J., Tang, T.Y., Chuang, W.S., 2008. Kuroshio in the Luzon Strait. Journal of Geophysical Research: Oceans 113.
Limonov, A., Kenyon, N., Ivanov, M., Woodside, J., 1995. Deep-sea depositional systems of the Western Mediterranean and mud volcanism on the Mediterranean Ridge. Initial results of geological and geophysical investigation during the fourth UNESCO-ESF" training-through-research" Cruise of R/V Gelendzhik (June-July 1994). UNESCO Reports in Marine Science= Rapports de l′Unesco sur les sciences de la mer

Limonov, A., Van Weering, T.C., Kenyon, N., Ivanov, M., Meisner, L., 1997. Seabed morphology and gas venting in the Black Sea mudvolcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Marine Geology 137, 121-136.
Limonov, A., Woodside, J., Cita, M., Ivanov, M., 1996. The Mediterranean Ridge and related mud diapirism: a background. Marine Geology 132, 7-19.
Lin, A., Watts, A.B., Hesselbo, S., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research 15, 453-478.
Lin, A., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y., 2009. Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics 479.

Lin, A.T., Liu, C.-S., Lin, C.-C., Schnurle, P., Chen, G.-Y., Liao, W.-Z., Teng, L.S., Chuang, H.-J., Wu, M.-S., 2008. Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology 255, 186-203.

Lin, C.-C., Lin, A.T.-S., Liu, C.-S., Horng, C.-S., Chen, G.-Y., Wang, Y., 2014. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Research 35, 21-35.
Liu, C.-S., Huang, I.L., Teng, L.S., 1997. Structural features off southwestern Taiwan. Marine Geology 137, 305-319.
Løseth, H., Gading, M., Wensaas, L., 2009. Hydrocarbon leakage interpreted on seismic data. Marine Petroleum Geology 26, 1304-1319.
Ma, X., Yan, J., Hou, Y., Lin, F., Zheng, X., 2016. Footprints of obliquely incident internal solitary waves and internal tides near the shelf break in the northern S outh C hina S ea. Journal of Geophysical Research: Oceans 121, 8706-8719.
McIntosh, K., van Avendonk, H., Lavier, L., Lester, W.R., Eakin, D., Wu, F., Liu, C.-S., Lee, C.-S., 2013. Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology 41, 871-874.
Metzger, E.J., Hurlburt, H.E., 1996. Coupled dynamics of the South China sea, the Sulu sea, and the Pacific ocean. Journal of Geophysical Research: Oceans 101, 12331-12352.
Milkov, A., 2000. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology 167, 29-42.
Miramontes, E., Jorry, S.J., Jouet, G., Counts, J.W., Courgeon, S., Le Roy, P., Guerin, C., Hernández‐Molina, F.J., 2019a. Deep‐water dunes on drowned isolated carbonate terraces (Mozambique Channel, south‐west Indian Ocean). Sedimentology 66, 1222-1242.
Miramontes, E., Jouet, G., Thereau, E., Bruno, M., Penven, P., Guerin, C., Le Roy, P., Droz, L., Jorry, S.J., Hernández‐Molina, F.J., 2020. The impact of internal waves on upper continental slopes: insights from the Mozambican margin (southwest Indian Ocean). Earth Surface Processes Landforms 45, 1469-1482.
Miramontes, E., Penven, P., Fierens, R., Droz, L., Toucanne, S., Jorry, S.J., Jouet, G., Pastor, L., Jacinto, R.S., Gaillot, A., 2019b. The influence of bottom currents on the Zambezi Valley morphology (Mozambique Channel, SW Indian Ocean): In situ current observations and hydrodynamic modelling. Marine Geology 410, 42-55.
Mitchell, N.C., 2014. Bedrock erosion by sedimentary flows in submarine canyons. Geosphere 10, 892-904.
Mitchell, N.C., Dade, W.B., Masson, D.G., 2003. Erosion of the submarine flanks of the Canary Islands. Journal of Geophysical Research: Earth Surface 108.
Montgomery, D.R., Greenberg, H.M., 2000. Local relief and the height of Mount Olympus. Earth Surface Processes and Landforms 25, 385-396.

Morita, S., Ashi, J., Aoike, K., Kuramoto, S.i., 2004. Evolution of Kumano basin and sources of clastic ejecta and pore fluid in Kumano mud volcanoes, Eastern Nankai Trough, Proceedings of the international symposium on methane hydrates and fluid flow in upper accretionary prisms. Citeseer, pp. 92-99.

Morley, C.K., Guerin, G., 1996. Comparison of gravity‐driven deformation styles and behavior associated with mobile shales and salt. Tectonics 15, 1154-1170.
Nan, F., Xue, H., Chai, F., Shi, L., Shi, M., Guo, P., 2011. Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics 61, 1291-1304.
Nan, F., Xue, H., Yu, F., 2015. Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography 137, 314-333.
Nitani, H., 1972. Beginning of the Kuroshio. Kuroshio, Physical Aspect of the Japan Current

Pinkel, R., Buijsman, M., Klymak, J.M., 2012. Breaking topographic lee waves in a tidal channel in Luzon Strait. Oceanography 25, 160-165.
Planke, S., Svensen, H., Hovland, M., Banks, D., Jamtveit, B., 2003. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Marine Letters 23, 258-268.
Qiu, B., Lukas, R., 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research: Oceans 101, 12315-12330.
Qu, T., 2000. Upper-layer circulation in the South China Sea. Journal of Physical Oceanography 30, 1450-1460.
Qu, T., Kim, Y.Y., Yaremchuk, M., Tozuka, T., Ishida, A., Yamagata, T., 2004. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? Journal of Climate 17, 3644-3657.
Qu, T., Lukas, R., 2003. The bifurcation of the North Equatorial Current in the Pacific. Journal of Physical Oceanography 33, 5-18.
Ray, R.D., Mitchum, G.T., 1996. Surface manifestation of internal tides generated near Hawaii. Geophysical Research Letters 23, 2101-2104.
Rebesco, M., Hernández-Molina, F.J., Van Rooij, D., Wåhlin, A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Marine Geology 352, 111-154.

Reed, D., Lundberg, N., Liu, C.-S., KUO, B.-Y., 1992. Structural relations along the margins of the offshore Taiwan accretionary wedge: implications for accretion and crustal kinematics. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì105-122.
Robertson, A., 1996. Mud volcanism on the Mediterranean Ridge: Initial results of ocean drilling program Leg 160. Geology 24, 239-242.
Romagnoli, C., Casalbore, D., Chiocci, F., 2012. La Fossa Caldera breaching and submarine erosion (Vulcano island, Italy). Marine Geology 303, 87-98.
Shaw, P.T., 1991. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research: Oceans 96, 821-827.
Somoza, L., Dıaz-del-Rıo, V., León, R., Ivanov, M., Fernández-Puga, M., Gardner, J., Hernández-Molina, F., Pinheiro, L., Rodero, J., Lobato, A., 2003. Seabed morphology and hydrocarbon seepage in the Gulf of Cadiz mud volcano area: Acoustic imagery, multibeam and ultra-high resolution seismic data. Marine geology 195, 153-176.
Sumner, R., Westbrook, G., 2001. Mud diapirism in front of the Barbados accretionary wedge: the influence of fracture zones and North America–South America plate motions. Marine Petroleum Geology 18, 591-613.
Sun, S.-C., Liu, C.-S., 1989. Mud Diapirs and Submarine Channel Deposits in Offshore Kaohsiung-Heugchun, Southwest Taiwan. Petroleum Geology of Taiwan1-14.
Tissot, B.P., Welte, D.H., 1984. From kerogen to petroleum, Petroleum formation and occurrence. Springer, pp. 160-198.

Wang, L., Wang, P., 1990. Late Quaternary paleoceanography of the South China Sea: Glacial‐interglacial contrasts in an enclosed basin. Paleoceanography 5, 77-90.
Wang, P., Wang, L., Bian, Y., Jian, Z., 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology 127, 145-165.
Watson, S.J., Whittaker, J.M., Lucieer, V., Coffin, M.F., Lamarche, G., 2017. Erosional and depositional processes on the submarine flanks of Ontong Java and Nukumanu atolls, western equatorial Pacific Ocean. Marine Geology 392, 122-139.
Weimer, P., Slatt, R.M., 2004. Petroleum systems of deepwater settings. Society of Exploration Geophysicists and European Association of ….

Whipple, K.X., Meade, B.J., 2006. Orogen response to changes in climatic and tectonic forcing. Earth Planetary Science Letters 243, 218-228.
Willett, S.D., 1999. Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth 104, 28957-28981.
Wu, C.-R., 2013. Interannual modulation of the Pacific Decadal Oscillation (PDO) on the low-latitude western North Pacific. Progress in Oceanography 110, 49-58.
Wu, C.-R., Chiang, T.-L., 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography 54, 1575-1588.
Wu, T., Sahling, H., Feseker, T., Rendle-Bühring, R., Wei, J., Wintersteller, P., Marcon, Y., Pape, T., Römer, M., Bohrmann, G., 2019. Morphology and activity of the helgoland mud volcano in the sorokin trough, northern black sea. Marine Petroleum Geology 99, 227-236.
Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. University of California, Scripps Institution of Oceanography.

Xiu, P., Chai, F., Shi, L., Xue, H., Chao, Y., 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research: Oceans 115.
XU, J., SU, J., 1997. Hydrographic analysis on the intrusion of the Kuroshio into the South China Sea II. Observational results during the cruise from August to September in 1994. Tropic Oceanology 2.
Yaremchuk, M., Qu, T., 2004. Seasonal variability of the large-scale currents near the coast of the Philippines. Journal of Physical Oceanography 34, 844-855.
Yu, H.-S., Chiang, C.-S., Shen, S.-M., 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems 76, 369-382.
Yuan, Y., Liao, G., Yang, C., 2008. The Kuroshio near the Luzon Strait and circulation in the northern South China Sea during August and September 1994. Journal of oceanography 64, 777-788.
Zhai, F., Hu, D., 2013. Revisit the interannual variability of the North Equatorial Current transport with ECMWF ORA‐S3. Journal of Geophysical Research: Oceans 118, 1349-1366.
Zhang, X., Cawood, P.A., Huang, C.-Y., Wang, Y., Yan, Y., Santosh, M., Chen, W., Yu, M., 2016. From convergent plate margin to arc–continent collision: Formation of the Kenting Mélange, Southern Taiwan. Gondwana Research 38, 171-182.
Zhao, Z., Mitchell, N.C., Quartau, R., Tempera, F., Bricheno, L., 2019. Submarine platform development by erosion of a Surtseyan cone at Capelinhos, Faial Island, Azores. Earth Surface Processes Landforms 44, 2982-3006.
Zhongxin, Q.D.Y.T.G., 1984. A west-flowing current in the northern part of South China Sea in summer Journal of Tropical Oceanography 4.
指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明