博碩士論文 108328019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.116.170.100
姓名 陳晧軒(Hao-Hsuan Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以滴塗製程控制Nafion自組織成膜並提升質子傳導與燃料電池功率密度
(Control of self-organization of dropcasted Nafion film for improving proton conduction in PEMFC to raise output power density)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本研究使用脈衝雷射沉積法(Pulsed Laser Deposition, PLD)製備Pt 奈米顆粒並應用於燃料電池陰陽極端之觸媒層,並結合滴塗Nafion薄膜(Dropcasted Nafion film)將質子交換膜直接滴塗於觸媒層上,優化觸媒層與質子交換膜的介面,增加質子傳輸之通道,提升觸媒利用率。
因滴塗Nafion薄膜製程其Nafion直接進入觸媒層,重新調整其各項參數從滴塗溶液之組成比例、成膜之乾化溫度、組成MEA之熱壓參數,陰陽極觸媒量及膜厚最薄之極限,將之組成燃料電池量測性能及電化學阻抗並透過電化學診斷,去探討及優化滴塗Nafion薄膜整套製程。
透過控制乾化過程之溫度,使乾化溫度85°C之滴塗Nafion薄膜相較商用膜其歐姆阻抗下降35%,雖然因使用滴塗製程使Nafion深入觸媒層孔隙會減少氣體傳輸通道,當擔載量為100 μg/cm2其性能相較商用膜低15%,但當擔載量提升至200 μg/cm2時其優點發揮出來,能利用到整體之觸媒電流密度相對擔載量100 μg/cm2時提升近40%之性能,相較商用膜擔載量提升至200 μg/cm2時只提升7%之電流密度。提升擔載量時便提升觸媒層厚度,同時使用商用膜時其質子傳輸受限於質子擴散距離,因增加之觸媒無法有良好質子傳輸,整體觸媒利用率下降,電流密度趨近飽和,而滴塗Nafion薄膜則滲透整層觸媒層使觸媒皆有良好質子傳輸能力於兩大氣壓下性能達到1994.9 mA/cm2。
摘要(英) In recent days, efficient green power generation has gained significant attention to control the rise in global warming. Hydrogen energy is considered as the source of energy storage and generation. The proton exchange membrane fuel cell (PEMFC) with higher efficiency is developed with increase in amount of noble metal catalyst, i.e., increasing the thickness of catalyst layer. But, the presence of higher amount of nano porous catalyst layer may not provide efficient transfer of generated protons from anode to cathode due lower contact of membrane with the catalyst. This may decrease the overall performance of PEMFC. This thesis is focused on developing high efficiency PEMFC with efficient proton transfer from anode to cathode with good contact of nafion and porous catalyst in the anode. In this study, Pt nanoparticles are coated on the carbon paper by pulsed laser deposition technique are used as the anode and cathode. Further, nafion is coated on the catalyst by drop casted on the catalyst layer. The drop casted nafion acts as the proton exchange membrane and also offers good contact to the catalyst for fast proton transfer. Processing parameters of the in-situ membrane development (nafion solution composition ratio, drop-casting, drying temperature of film) process, membrane electrode assembly and thickness of the nafion on the performance of PEMFC is well investigated with electrochemical analysis and diagnostics techniques. The amount of the catalyst layer and thickness are also considered in this study.
The experimental results of in-situ membrane development shows that, annealing of nafion film at 85 ᵒC reduces the ohmic resistance by 35 % compared to the PEMFC assembled with commercial MEA as the drop casting of nafion reduces the gas transfer path. The performance of PEMFC with 100 µg/cm2 catalyst loading is 15 % lower than the commercial PEMFC. But, PEMFC with 200 µg/cm2 catalyst and in-situ membrane exhibits 40 % higher in performance compared to the commercial PEMFC. This higher performance is achieved with the good intact between the catalyst and nafion (proton exchange) membrane. In commercial MEA, the proton transfer is limited due to the higher thickness of catalyst and lower contact between the catalyst and the membrane. An increase in 7.3% of performance of commercial PEMFC is observed with rise of catalyst loading from 100 µg/cm2 to 200 µg/cm2. Whereas, the PEMFC with in-situ MEA exhibits 39.37% with rise of catalyst loading from 100 µg/cm2 to 200 µg/cm2. The efficient proton transfer between catalyst and nafion membrane could help in increasing the efficiency of PEMFC. The in-situ MEA (catalyst loading: 200 µg/cm2) PEMFC exhibits current density of 1454.2 mA/cm2. Further, the same cell exhibits current density of 1994.9 mA/cm2 with 2 atmospheric pressure at anode and cathode. An in-situ proton exchange (nafion) membrane development by simple process for high efficiency PEMFC is demonstrated in this thesis. Also, in-situ membrane development could reduce the cost of PEMFC with reduced cost of membrane. This work helps in designing MEA for high efficiency PEMFC for green power generation.
關鍵字(中) ★ 脈衝雷射沉積
★ 滴塗質子交換膜
★ 質子交換膜燃料電池
關鍵字(英) ★ pulsed laser deposition
★ proton exchange membrane fuel cell
★ drop casting
★ nafion
論文目次 摘要 i
Abstract iv
致謝 vi
目錄 vii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 燃料電池介紹 2
1-2-1 質子交換膜燃料電池運作原理 4
1-2-2 質子交換膜燃料電池基本構造 5
1-2-3 膜電極組基本構造及製備方式 7
1-3 觸媒層製程發展 9
1-3-1 製備觸媒層之方式 9
1-3-2 燃料電池觸媒層各製程之現況 19
1-3-3 PEMFC主要發展之瓶頸 21
1-4 本團隊已完成之工作 23
1-5 研究動機與目的 24
第二章 文獻回顧 25
2-1 質子交換膜燃料電池 25
2-2 質子交換膜之研究 26
2-3 金屬多孔材之研究與應用 26
2-4 電化學交流阻抗分析 28
2-5 PEMFC觸媒研究發展 29
2-5-1 Pt觸媒表面形貌及顆粒大小研究探討 29
2-6 應用脈衝雷射沉積於燃料電池 30
2-6-1 脈衝雷射沉積鉑於氣體擴散層 30
2-7 直接滴塗質子交換膜之燃料電池 32
第三章 實驗方法與設備 33
3-1 實驗流程 33
3-2 實驗所需之材料 34
3-3 脈衝雷射沉積系統(Pulsed Laser Deposition, PLD) 35
3-3-1 脈衝雷射系統架設 35
3-3-2 奈米合金觸媒樣品製備參數 37
3-4 滴塗 Nafion薄膜製備方式(Dropcasted Nafion film) 38
3-4-1 Dropcasted Nafion film之溶液製備 38
3-4-2 接觸角測試(Contect angle) 39
3-4-3 2-D CNC printer Dropcasted Nafion film 39
3-5 膜電極組製備與方式 41
3-5-1 商用膜之膜電極組製備及組裝 41
3-5-2 Dropcasted Nafion film之膜電極組製備及組裝 42
3-6 觸媒與Dropcasted Nafion film檢測方式 43
3-6-1 掃描式電子顯微鏡 43
3-6-1 穿透式電子顯微鏡 45
3-6-2 循環伏安法 (Cyclic Voltammetry, CV) 46
3-7 導電式原子力顯微鏡 51
3-8 離子切割研磨機含冷凍控溫及空氣阻斷系統(Ion Milling with Cooling control unit and Air Protection System) 52
3-9 燃料電池測試 53
3-9-1 測試系統介紹 53
3-9-2 單電池測試系統之操作程序 54
3-9-3 電子阻抗頻譜測試 57
第四章 實驗結果與討論 60
4-1 Dropcasted Nafion film之溶液組成分析 60
4-1-1 接觸角量測 60
4-1-2 Dropcasted Nafion film表面完整性分析 61
4-1-3 Dropcasted Nafion film之表面分布分析 63
4-1-4 Dropcasted Nafion film之膜厚分析 64
4-2 不同乾化溫度對薄膜之影響 64
4-2-1 不同乾化溫度薄膜之燃料電池性能比較 64
4-2-2 不同乾化溫度薄膜之燃料電池EIS分析 66
4-2-3 不同乾化溫度膜之C-AFM 68
4-3 熱壓參數對Dropcasted Nafion film膜之影響 69
4-3-1 Dropcasted Nafion film不同熱壓參數之性能比較 69
4-3-2 Dropcasted Nafion film不同熱壓參數之EIS分析 71
4-4 不同擔載量及不同操作壓力之燃料電池 72
4-4-1 相同操作壓力商用膜與滴塗質子交換膜之性能比較 72
4-4-2 相同操作壓力商用膜與滴塗質子交換膜之EIS分析 73
4-4-3 商用膜與滴塗Nafion薄膜之PEMFC性能比較 75
4-4-4 不同陽極端擔載量之燃料電池性能比較 79
4-5 Dropcasted Nafion film之結構分析及不同膜厚性能比較 80
4-5-1 商用膜與Dropcasted Nafion film MEA之結構分析 80
4-5-2 Dropcasted Nafion film不同膜厚之燃料電池性能比較 82
4-5-3 Dropcasted Nafion film不同膜厚之EIS分析 83
第五章 結論 84
第六章 未來展望 85
參考文獻 86
參考文獻 [1] 王智薇,「淺談新興能源科技產業─氫能與燃料電池」,產經資訊,2008。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] S. M. Haile, “Fuel cell material and components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[4] 黃鎮江,「燃料電池」,全華科技股份有限公司,2005。
[5] 趙中興,「燃料電池基礎」,全華圖書 ,2008 。
[6] Y Wang, K S. Chen, J Mishler, S C Cho, X C Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, 88, pp. 981 1007, 2011.
[7] L. Xiong, A. Manthiram, “High Performance Membrane Electrode Assemblies with Ultra-Low Pt Loading for Proton Exchange Membrane Fuel Cells”, Electrochim. Acta, Vol. 50, pp. 3200 3204, 2005.
[8] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, J. Power Sources, 195 , 756-761, 2010.
[9] http://www.toray eng.com/lcd/coater/lineup/esc.html
[10] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, J. Electrochem. Soc., Vol. 151, pp. 1733-1737, 2004.
[11] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, J. Power Sources, Vol. 271, pp. 401-405, 2014.
[12] H. Kim, N.P. Subramanian, B.N.71 Popov, “Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition”, J. Power Sources, Vol. 138, pp. 14-24, 2004.
[13] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, J. Phys. D: Appl. Phys., Vol. 47, pp. 272001, 2014.
[14] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[15] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim. Acta, Vol. 146, pp. 171-177, 2014.
[16] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim. Acta, Vol. 51, pp. 4680-4692, 2006.
[17] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[18] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim. Acta, Vol. 177, pp. 168-173, 2015.
[19] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[20] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[21] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng , “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, J. Phys. D Appl. Phys., Vol. 49, pp. 255601, 2016.
[22] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization” ECS Trans., Vol. 11, pp. 383–391, 2007.
[23] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett., Vol. 4,pp. 345–348, 2004.
[24] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[25] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, J. Power Sources, Vol. 273, pp. 885-893, 2015.
[26] A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[27] S. M. Haile, “Fuel Cell Material and Components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[28] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X.C. Adronher. “A Review of Polymer Electrolyte Membrane Fuel Cells:Technology, Applications and Needs on Fundamental Research”, Applied Energy, Vol, 88, pp. 981-1007, 2011.
[29] http://www.goldgold168.com/palladium.php#.WyjZR1X-jRY
[30] U.S. Department of Energy, “Fuel Cell System Cost”, 2017.
[31] Y. F. Zhai, H. Zhang, D.Xing, Z. G. Shao, “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test”, J. Power Sources, Vol. 164, pp. 126-133, 2007.
[32] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, “A Review of PEM Fuel Cell Durability:Degradation Mechanisms and Mitigation Strategies”, J. Power Sources, Vol. 184, pp. 104-119, 2008.
[33] 林冠任,「利用脈衝雷射沉積技術成長PEMFC鉑奈米顆粒觸媒」,國立中央大學,碩士論文,2015年。
[34] 黃亭維,「應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層」,國立中央大學,碩士論文,2016年。
[35] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[36] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, Journal Power Sources, Vol. 191, pp. 289-296, 2009.
[37] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell” , Journal of Power Source, Vol. 80, pp. 226-234, 1999.
[38] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions”, Journal of Power Sources, Vol. 128, pp. 208-217, 2004.
[39] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells”, Journal of Power Sources, Vol. 180, pp. 1-14, 2008.
[40] Q. G. He,A. Kusoglu,I. T. Lucas,K. Clark,A.Z. Weber,R. Kostecki, “Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes”, J. Phys. Chem. B,2011, Vol. 115, pp.11650-11657.
[41] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal Heat Transfer, Vol. 124, pp. 120-129, 2002.
[42] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, Journal of Material Science, Vol. 42, pp. 4372-4383, 2007.
[43] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[44] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor”, International Journal of Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[45] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 295, pp. 275-291, 2015
[46] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1”, Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[47] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells”, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 475, pp. 107-123, 1999.
[48] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance”, Journal of Power Sources, Vol.161, pp. 908-928, 2006.
[49] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance”, Journal of Power Sources, Vol.161, pp. 929-937, 2006.
[50] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes”, International Journal of Hydrogen, Vol.32, pp. 4358-4364, 2007.
[51] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell” , SAE International by University of British Columbia, Monday, 24 September, 2018.
[52] M. D. Maciá, J. M. Campiña, E. Herrero, J. M. Feliu, “On the Kinetics of Oxygen Reduction on Platinum Stepped Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 564, pp. 141−150, 2004.
[53] A. Kuzume, E. Herrero, J. M. Feliu, “Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 599, pp. 333−343, 2007.
[54] A. M. Gómez-Marín, R. Rizo, J. M. Feliu, “Some Reflections on the Understanding of the Oxygen Reduction Reaction at Pt(111)”, Beilstein J. Nanotechnol., Vol. 4, pp. 956−967, 2013.
[55] A. M. Gómez-Marín, J. M. Feliu, “Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(111)”, Catal. Today, Vol. 244, pp. 172−176, 2015.
[56] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714−3719, 2011.
[57] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[58] M. Klingele, M. Breitwieser, R. Zengerleab,S. Thieleac, “Direct deposition of proton exchange membranesenabling high performance hydrogen fuel cells”, Journal of Materials Chemistry A ,Vol. 3,pp.11239-11245,2015.
[59] R. R. Adzic, “Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties. Electrocatalysis”, Vol. 3, pp. 163−169, 2012.
[60] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A Valerio, F. Uribe, “Platinum Monolayer Fuel Cell Electrocatalysts. Top”, Catal., Vol. 46, pp. 249−262, 2007.
[61] W.-P. Zhou, K. Sasaki, D. Su, Y. Zhu, J. X. Wang, R. R. Adzic, “Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction.”, J. Phys. Chem. C, Vol. 114, pp. 8950−8957, 2010.
[62] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, “Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”, Science, Vol. 315, pp. 220−222, 2007.
[63] J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, “Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates”, Angew. Chem., Int. Ed., Vol. 44, pp. 2132−2135, 2005.
[64] B. Han, C. E. Carlton, J. Suntivich, Z. Xu, Y. Shao-Horn, “Oxygen Reduction Activity and Stability Trends of Bimetallic Pt0.5M0.5 Nanoparticle in Acid”, J. Phys. Chem. C, Vol. 119 , pp. 3971−3978, 2015.
[65] K. A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R. R. Adzic, “Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity”, Nano Lett., Vol. 12, pp. 6266−6271, 2012.
[66] K. A. Kuttiyiel, Y. Choi, S.-M. Hwang, G.-G. Park, T.- H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, “Enhancement of the Oxygen Reduction on Nitride Stabilized Pt-M (M = Fe, Co, and Ni) Core- Shell Nanoparticle Electrocatalysts”, Nano Energy, Vol. 13, pp. 442−449, 2015.
[67] J. Iglesia, C. C. Lang, Y. M. Chen, S. Y. Chen, C. J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer”, Journal of Power Sources, Vol. 436 pp. 226886, 2019
[68] B. Han, C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O′Malley, P. Strasser, F. T. Wagnerd, S. H. Yang, “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells”, Energy Environ. Sci., Vol. 8, pp. 258–266, 2015.
[69] Z. Qi, A. Kaufman, “Low Pt Loading High Performance Cathodes for PEM Fuel Cells”, J. Power Sources, Vol. 113, pp. 37-43, 2003.
[70] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion Loading in the Catalyst Layer of Gas Diffusion Electrodes for PEMFC”, J. Power Sources, Vol. 77, pp. 136-142, 1999.
[71] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum Poading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers”, Electrochim. Acta, Vol. 40, pp. 355-363, 1995.
[72] T. Frey, M. Linardi, “Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance”, Electrochim. Acta, Vol. 50, pp. 99-105, 2004.
[73] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[74] J. M. Rodríguez, J. A. H. Melivn, J. P. Peña, “Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry”, J. Chem. Educ., Vol. 77, pp. 1195–7, 2000.
[75] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon Nanocages: a New Support Material for Pt Catalyst with Remarkably High Durability”, Sci. Rep., Vol. 4, pp. 4437,2014.
[76] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM Fuel Cell with Metal Foam as Flow Distributor”, Energy Convers. Manage., Vol. 62, pp. 14-21, 2012.
[77] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學,碩士論文,2013年。
[78] Y. S. Sedesheva,V. S. Ivanov, A. I. Wozniak,A. S. Yegorov“Proton-Exchange Membranes Based on Sulfonated Polymers”, ORIENTAL JOURNAL of Chem.,Vol. 32, pp. 2283-2296, 2016.
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2021-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明