參考文獻 |
A. K. Jain and D. Maltoni, Handbook of Fingerprint Recognition. Berlin, Heidelberg: Springer-Verlag, 2003.
[2] N. K. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems. SpringerVerlag, 2003.
[3] J. Ravi, R. K B, and V. K R, “Fingerprint Recognition Using Minutia Score Matching,” CoRR, vol. abs/1001.4, 2010.
[4] W. Lee, S. Cho, H. Choi, and J. Kim, “Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners,” Expert Syst. Appl., vol. 87, pp. 183–198, Nov. 2017, doi: 10.1016/j.eswa.2017.06.019.
[5] J. Qi and Y. Wang, “A robust fingerprint matching method,” Pattern Recognit., vol. 38, no. 10, pp. 1665–1671, Oct. 2005, doi: 10.1016/j.patcog.2005.03.002.
[6] E. Zhu, J. Yin, and G. Zhang, “Fingerprint matching based on global alignment of multiple reference minutiae,” Pattern Recognit., vol. 38, no. 10, pp. 1685–1694, Oct. 2005, doi: 10.1016/j.patcog.2005.02.016.
[7] T. Y. Jea and V. Govindaraju, “A minutia-based partial fingerprint recognition system,” Pattern Recognit., vol. 38, no. 10, pp. 1672–1684, Oct. 2005, doi: 10.1016/j.patcog.2005.03.016.
[8] N. Ahmed and A. Varol, “Minutiae based partial fingerprint registration and matching method,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS), 2018, pp. 1–5, doi: 10.1109/ISDFS.2018.8355343.
[9] S. Malathi and C. Meena, “Improved Partial Fingerprint Matching Based on Score Level Fusion Using Pore and SIFT Features,” in 2011 International Conference on Process Automation, Control and Computing, Jul. 2011, pp. 1–4, doi: 10.1109/PACC.2011.5979022.
[10] V. Anand and V. Kanhangad, “PoreNet: CNN-Based Pore Descriptor for High-Resolution Fingerprint Recognition,” IEEE Sens. J., vol. 20, no. 16, pp. 9305–9313, Aug. 2020, doi: 10.1109/JSEN.2020.2987287.
[11] A. Aravindan and S. M. Anzar, “Robust partial fingerprint recognition using wavelet SIFT descriptors,” Pattern Anal. Appl., vol. 20, no. 4, pp. 963–979, 2017, doi: 10.1007/s10044-017-0615-x.
[12] O. Zanganeh, N. Bhattacharjee, and B. Srinivasan, “Partial Fingerprint Alignment and Matching Through Region-Based Approach,” in Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia, 2015, pp. 275–284, doi: 10.1145/2837126.2837132.
[13] Y. Li and G. Shi, “ORB-based Fingerprint Matching Algorithm for Mobile Devices,” in 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET), Aug. 2019, pp. 11–15, doi: 10.1109/CCET48361.2019.8989155.
[14] P. Gayathiri and M. Punithavalli, “Partial Fingerprint Recognition of Feature Extraction and Improving Accelerated KAZE Feature Matching Algorithm,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, p. 6, 2019.
[15] S. Mathur, A. Vjay, J. Shah, S. Das, and A. Malla, “Methodology for partial fingerprint enrollment and authentication on mobile devices,” 2016, pp. 1–8, doi: 10.1109/ICB.2016.7550093.
[16] S. K. Sharma and K. Jain, “Image Stitching using AKAZE Features,” J. Indian Soc. Remote Sens., vol. 48, no. 10, pp. 1389–1401, 2020, doi: 10.1007/s12524-020-01163-y.
[17] P. Fernández Alcantarilla, A. Bartoli, and A. Davison, “KAZE Features,” 2012, doi: 10.1007/978-3-642-33783-3_16.
[18] P. Fernández Alcantarilla, “Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces,” 2013, doi: 10.5244/C.27.13.
[19] A. Eck, “Neural Networks for Survey Researchers,” Surv. Pract., vol. 11, pp. 1–11, 2018, doi: 10.29115/SP-2018-0002.
[20] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 30, no. 4, pp. 451–462, Nov. 2000, doi: 10.1109/5326.897072.
[21] N. Zaeri, “Minutiae-based Fingerprint Extraction and Recognition,” 2011.
[22] D. Peralta et al., “A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation,” Inf. Sci. (Ny)., vol. 315, 2015, doi: 10.1016/j.ins.2015.04.013.
[23] K. Tiwari, S. Mandi, and P. Gupta, “A Heuristic Technique for Performance Improvement of Fingerprint Based Integrated Biometric System,” 2013, vol. 7995, pp. 584–592, doi: 10.1007/978-3-642-39479-9_68.
[24] S. H. Bhati and U. C. Pati, “Novel algorithm for fingerprint mosaicing using phase correlation method,” in 2015 Global Conference on Communication Technologies (GCCT), Apr. 2015, pp. 29–33, doi: 10.1109/GCCT.2015.7342618.
[25] G.-I. Ri, C.-G. Ri, and S.-R. Ji, “A Fingerprint Indexing Method Based on Minutia Descriptor and Clustering.” 2018.
[26] M. A. Medina-Perez, M. Garcia-Borroto, A. E. Gutierrez-Rodriguez, and L. Altamirano-Robles, “Robust Fingerprint Verification Using M-Triplets,” in 2011 International Conference on Hand-Based Biometrics, Nov. 2011, pp. 1–5, doi: 10.1109/ICHB.2011.6094348.
[27] M. A. Medina-Pérez, M. García-Borroto, A. E. Gutierrez-Rodríguez, and L. Altamirano-Robles, “Improving fingerprint verification using minutiae triplets.,” Sensors (Basel)., vol. 12, no. 3, pp. 3418–3437, 2012, doi: 10.3390/s120303418.
[28] R. Kumar, “Orientation Local Binary Pattern Based Fingerprint Matching,” SN Comput. Sci., vol. 1, no. 2, p. 67, 2020, doi: 10.1007/s42979-020-0068-y.
[29] G. Fang, S. Srihari, H. Srinivasan, and P. Phatak, “Use of ridge points in partial fingerprint matching,” Proc. SPIE - Int. Soc. Opt. Eng., vol. 6539, 2007, doi: 10.1117/12.718941.
[30] K. Castillo-Rosado and J. Hernández-Palancar, “Ridge-Based Fingerprint Matching: A survey.” 2015.
[31] Y. Zhang, X. Yang, Q. Su, and J. Tian, “Fingerprint Recognition Based on Combined Features BT - Advances in Biometrics,” 2007, pp. 281–289.
[32] L. A. Ramos and A. N. Marana, “Fusion of Methods Based on Minutiae, Ridges and Pores for Robust Fingerprint Recognition,” ArXiv, vol. abs/1805.1, 2018.
[33] S. Malathi and C. Meena, “An utility of pores in partial fingerprint matching,” in 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Jun. 2011, pp. 965–968, doi: 10.1109/ICRTIT.2011.5972429.
[34] A. Jain, Y. Chen, and M. Demirkus, “Pores and ridges: high-resolution fingerprint matching using level 3 features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 15–27, 2007, doi: 10.1109/TPAMI.2007.17.
[35] E. Tola, V. Lepetit, and P. Fua, “Daisy: An Efficient Dense Descriptor Applied to Wide Baseline Stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 815–830, 2010, doi: 10.1109/TPAMI.2009.77.
[36] F. Turroni, “Fingerprint Recognition: Enhancement, Feature Extraction and Automatic Evaluation of Algorithms,” 2012.
[37] A. K. Jain, P. Flynn, and A. A. Ross, Handbook of Biometrics. Berlin, Heidelberg: Springer-Verlag, 2007.
[38] Manal Abdullah, Mona Alkhozae, and Mashaiel, “Fingerprint Matching Approach Based on Bifurcation Minutiae,” J. Inf. Commun. Technol., vol. 2, no. 5, pp. 2047–3168, 2012.
[39] U. Soni and G. Mahesh, “A Survey on State of the Art Methods of Fingerprint Recognition,” 2018.
[40] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain, FVC2002: Second Fingerprint Verification Competition, vol. 3. 2002.
[41] M. El-Abed, C. Charrier, and C. Rosenberger, “Evaluation of Biometric Systems,” New Trends Dev. Biometrics, Nov. 2012, doi: 10.5772/52084.
[42] A. Namboodiri, “MINUTIAE LOCAL STRUCTURES FOR FINGERPRINT INDEXING AND MATCHING,” 2013.
[43] I. Lucena et al., A simple and effective way to extract ROI in fingerprint images. 2011.
[44] E. Erwin, N. Karo, A. Sari, N. Aziza, and H. Putra, “The Enhancement of Fingerprint Images using Gabor Filter,” J. Phys. Conf. Ser., vol. 1196, p. 12045, Mar. 2019, doi: 10.1088/1742-6596/1196/1/012045.
[45] A. Jakubović and J. Velagić, “Image Feature Matching and Object Detection Using Brute-Force Matchers,” in 2018 International Symposium ELMAR, 2018, pp. 83–86, doi: 10.23919/ELMAR.2018.8534641.
[46] A. S. Arefin, C. Riveros, R. Berretta, and P. Moscato, “GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs,” PLoS One, vol. 7, p. e44000, Aug. 2012, doi: 10.1371/journal.pone.0044000.
[47] B. Jayaraman, Artificial Neural Networks - Theory and Applications. 2017.
[48] A. Taravat, S. Proud, S. Peronaci, F. Del Frate, and N. Oppelt, “Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking,” Remote Sens., vol. 7, no. 2, pp. 1529–1539, 2015, doi: 10.3390/rs70201529.
[49] P. Marius, V. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer perceptron and neural networks,” WSEAS Trans. Circuits Syst., vol. 8, Jul. 2009.
[50] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Mar. 2018.
[51] S. Çelik and Ö. Tan, “Determination of preconsolidation pressure with artificial neural network,” Civ. Eng. Environ. Syst., vol. 22, no. 4, pp. 217–231, 2005, doi: 10.1080/10286600500383923.
[52] H. Shaziya, “A Study of the Optimization Algorithms in Deep Learning,” Mar. 2020, doi: 10.1109/ICISC44355.2019.9036442.
[53] V. Melo, S. Leao, D. Menotti, and W. Schwartz, An Optimized Sliding Window Approach to Pedestrian Detection. 2014.
[54] C. Pal, A. Kotal, A. Samanta, A. Chakrabarti, and R. Ghosh, “Design space exploration for image processing architectures on FPGA targets,” Apr. 2014. |