博碩士論文 109522607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.16.160.142
姓名 王帆程(Farchan hakiim Raswa)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 用於部分指紋識別的 AKAZE 和神經網絡的融合方法
(A Fusion Methodology of AKAZE and Neural Network for Partial Fingerprint Recognition)
相關論文
★ Single and Multi-Label Environmental Sound Recognition with Gaussian Process★ 波束形成與音訊前處理之嵌入式系統實現
★ 語音合成及語者轉換之應用與設計★ 基於語意之輿情分析系統
★ 高品質口述系統之設計與應用★ 深度學習及加速強健特徵之CT影像跟骨骨折辨識及偵測
★ 基於風格向量空間之個性化協同過濾服裝推薦系統★ RetinaNet應用於人臉偵測
★ 金融商品走勢預測★ 整合深度學習方法預測年齡以及衰老基因之研究
★ 漢語之端到端語音合成研究★ 基於 ARM 架構上的 ORB-SLAM2 的應用與改進
★ 基於深度學習之指數股票型基金趨勢預測★ 探討財經新聞與金融趨勢的相關性
★ 基於卷積神經網路的情緒語音分析★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,像筆記型電腦、智慧型手機及平板電腦的各種行動裝置已經成為人們生活中的一部份,而保證在這些行動裝置上資料的安全是必要的。指紋是其中一種足以識別個別身分的生物特徵,被用於各種場合,包括付款、銀行、出勤及個人財物。然而,因為行動裝置上的指紋感測器大小只有10 x 10 mm2,所得的影像為局部指紋,像紋路、特徵點及毛孔這類的資訊可能不足,在行動裝置上辨識指紋影像是困難的。
本篇論文提出一種新的局部指紋辨識方法。首先,用來識別身分的指紋特徵由AKAZE演算法計算得出,這種局部特徵不受指紋影像的雜訊、尺度及方向影響。其次,指紋影像的比對採用滑動視窗的方式,這種方式能徹底地進行完整指紋影像對局部指紋影像的比對。最後,比對分數由人工神經網路計算得出,比起啟發式方法,人工神經網路可以在缺少規則的情形下辨別多樣化的資料。
本篇論文在FVC2002資料庫上進行實驗並評估演算法效果,結果顯示所提出的方法滿足生物識別技術的相關需求。所得的EER及FRR@FAR 1/50000皆小於9%,最好的結果出自DB1,EER達4.95%,FRR@FAR 1/50000達6.06%。然而,演算法所設定的指紋影像解析度為184 x 184 pixels,尚無法辨識較低解析度的指紋影像。未來的研究會以適應各種不同的影像解析度為目標進行改進,而在電腦視覺領域中,深度學習方法被用來解決許多複雜的問題,應該能使演算法在不同的影像解析度下保持水準。
摘要(英) In recent years, mobile devices such as laptops, smartphones, and tablets have become an integral part of human activities. Accordingly, we need a method to ensure data confidentiality on mobile devices. The fingerprint is one of the unique biometric traits used to authenticate individuals. It is widely used for security issues, including payments, banking, attendance, and securing belongings. However, recognizing the fingerprint image on a mobile device is difficult since the fingerprint reader is only 10 x 10 mm2 in size. The reader captures only some parts of a whole fingerprint. This result contains only a small amount of information, such as ridges, minutiae, and pores.
We proposed a novel methodology for partial fingerprint recognition. The fingerprint feature was represented using the local feature-based AKAZE. These features were selected because they could maintain the fingerprint image′s noise, scale, and orientation. Moreover, we formulated the standard of matching tasks using a sliding window. This sliding window made it possible to compare full images and partial queries comprehensively. As part of this approach, we also replaced the heuristic method of calculating the matching rate with neural networks. A neural network had proven to be able to distinguish between a variety of data without the need for a lot of rules.
As validation, we experimented with our method using an instance of the FVC2002 database. Our method achieves adequate results in terms of biometric evaluation. These values of EER and FRR@FAR 1/5000 are both less than 9%. The highest success rate was recorded in DB1, EER reached 4.95%, and FRR@FAR 1/50000 reached 6.06%. However, these methods only optimize for images of 184x184 pixels. We cannot yet recognize fingerprints when the resolution is reduced. As future research, we must ensure our method work in various image resolutions. Deep learning can help sustain performance across resolutions. As far as computer vision is concerned, deep learning has been proven to be successful in solving complex problems.
關鍵字(中) ★ AKAZE特徵
★ 滑動視窗
★ 決策評分
★ 局部指紋辨識
關鍵字(英) ★ AKAZE feature representation
★ sliding window
★ decision scoring
★ partial fingerprint recognition
論文目次 抽象 i
Abstract ii
ACKNOWLEDGMENTS iii
CONTENTS iii
List of Figures vi
List of Tables viii
CHAPTER I INTRODUCTION 1
1.1 Motivation 1
1.2 Research Problem 2
1.3 Problem Formulation 3
1.4 Research Objectives 3
1.5 Research benefits 3
1.6 Research Contributions 4
1.7 Thesis Overview 4
CHAPTER II LITERATURE REVIEW 6
CHAPTER III THEORETICAL THESIS 9
3.1 Biometric 9
3.1.1 Biometric Recognition 9
3.1.2 Biometric System 10
3.2 Fingerprints 12
3.2.1 Fingerprint Representation 13
3.2.2 Fingerprint Impressions 13
3.3 Fingerprint Databases 15
3.3.1 Introduction of Fingerprint Verification Competition 2002 15
3.3.2 Database collection 15
3.3 Evaluation of Fingerprint System 17
3.3.1 System Performance by fixed threshold (t) 17
3.4 Segmentation and Finding ROI (Region of Interest) 20
3.5 Fingerprint Enhancement 22
3.5.2 Filtering using Gabor Filter 23
3.5.3 Image binary transformation 23
3.6 AKAZE FEATURE 24
3.6.1 Nonlinear Diffusion Filtering 24
3.6.2 Building a Nonlinear Scale Space with Fast Explicit Diffusion (FED) 25
3.6.3 Feature Detection using Hessian Response 26
3.6.4 Feature Description using Modified-Local Difference Binary (M-LDB) 27
3.7 Feature Matching using Brute Force 28
3.8 Artificial Neural Network 29
3.8.1 Architecture of Multilayer Perceptron 30
3.8.2 Activation Function of Rectified Linear Units (ReLU) 31
3.8.3 Training Procedure (forward propagation and backpropagation) 32
3.8.4 Optimizer 33
3.9 Sliding Window Approach 34
3.10 Iterative Orientation Algorithm 35
CHAPTER IV RESEARCH METHODOLOGY 36
4.1 System Analysis 36
4.2 Tools and Materials 37
4.2 Research Procedures 38
4.3 General System Design 38
4.3.1 Dataset Preparation Design 41
4.3.2 Feature Extraction Design 42
4.3.4 Decision Scoring Design 44
4.4 Evaluation Design 45
CHAPTER V RESULTS AND ANALYSIS 47
5.1 Description of Partial Fingerprint Datasets 47
5.2 Baseline Performance using Full Image Recognition 48
5.3 Performance of Proposed Method 49
5.3.1 Analysis of Preprocessing Approach 50
5.3.2 Analysis of Decision Scoring Approach 53
5.4 Reliability of Proposed method 56
5.4.1 Analysis of Various Resolution 57
5.4.2 Analysis of Various Orientation 62
CHAPTER VI CONCLUSIONS 67
6.1 Research Summaries 67
6.2 Research Limitations 68
6.3 Future Research 68
Bibliographies 69
APPENDIX 73
A. Data Acquisition 73
B. Image Segmentation and ROI 74
C. Feature Representation 75
參考文獻 A. K. Jain and D. Maltoni, Handbook of Fingerprint Recognition. Berlin, Heidelberg: Springer-Verlag, 2003.
[2] N. K. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems. SpringerVerlag, 2003.
[3] J. Ravi, R. K B, and V. K R, “Fingerprint Recognition Using Minutia Score Matching,” CoRR, vol. abs/1001.4, 2010.
[4] W. Lee, S. Cho, H. Choi, and J. Kim, “Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners,” Expert Syst. Appl., vol. 87, pp. 183–198, Nov. 2017, doi: 10.1016/j.eswa.2017.06.019.
[5] J. Qi and Y. Wang, “A robust fingerprint matching method,” Pattern Recognit., vol. 38, no. 10, pp. 1665–1671, Oct. 2005, doi: 10.1016/j.patcog.2005.03.002.
[6] E. Zhu, J. Yin, and G. Zhang, “Fingerprint matching based on global alignment of multiple reference minutiae,” Pattern Recognit., vol. 38, no. 10, pp. 1685–1694, Oct. 2005, doi: 10.1016/j.patcog.2005.02.016.
[7] T. Y. Jea and V. Govindaraju, “A minutia-based partial fingerprint recognition system,” Pattern Recognit., vol. 38, no. 10, pp. 1672–1684, Oct. 2005, doi: 10.1016/j.patcog.2005.03.016.
[8] N. Ahmed and A. Varol, “Minutiae based partial fingerprint registration and matching method,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS), 2018, pp. 1–5, doi: 10.1109/ISDFS.2018.8355343.
[9] S. Malathi and C. Meena, “Improved Partial Fingerprint Matching Based on Score Level Fusion Using Pore and SIFT Features,” in 2011 International Conference on Process Automation, Control and Computing, Jul. 2011, pp. 1–4, doi: 10.1109/PACC.2011.5979022.
[10] V. Anand and V. Kanhangad, “PoreNet: CNN-Based Pore Descriptor for High-Resolution Fingerprint Recognition,” IEEE Sens. J., vol. 20, no. 16, pp. 9305–9313, Aug. 2020, doi: 10.1109/JSEN.2020.2987287.
[11] A. Aravindan and S. M. Anzar, “Robust partial fingerprint recognition using wavelet SIFT descriptors,” Pattern Anal. Appl., vol. 20, no. 4, pp. 963–979, 2017, doi: 10.1007/s10044-017-0615-x.
[12] O. Zanganeh, N. Bhattacharjee, and B. Srinivasan, “Partial Fingerprint Alignment and Matching Through Region-Based Approach,” in Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia, 2015, pp. 275–284, doi: 10.1145/2837126.2837132.
[13] Y. Li and G. Shi, “ORB-based Fingerprint Matching Algorithm for Mobile Devices,” in 2019 IEEE 2nd International Conference on Computer and Communication Engineering Technology (CCET), Aug. 2019, pp. 11–15, doi: 10.1109/CCET48361.2019.8989155.
[14] P. Gayathiri and M. Punithavalli, “Partial Fingerprint Recognition of Feature Extraction and Improving Accelerated KAZE Feature Matching Algorithm,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 10, p. 6, 2019.
[15] S. Mathur, A. Vjay, J. Shah, S. Das, and A. Malla, “Methodology for partial fingerprint enrollment and authentication on mobile devices,” 2016, pp. 1–8, doi: 10.1109/ICB.2016.7550093.
[16] S. K. Sharma and K. Jain, “Image Stitching using AKAZE Features,” J. Indian Soc. Remote Sens., vol. 48, no. 10, pp. 1389–1401, 2020, doi: 10.1007/s12524-020-01163-y.
[17] P. Fernández Alcantarilla, A. Bartoli, and A. Davison, “KAZE Features,” 2012, doi: 10.1007/978-3-642-33783-3_16.
[18] P. Fernández Alcantarilla, “Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces,” 2013, doi: 10.5244/C.27.13.
[19] A. Eck, “Neural Networks for Survey Researchers,” Surv. Pract., vol. 11, pp. 1–11, 2018, doi: 10.29115/SP-2018-0002.
[20] G. P. Zhang, “Neural networks for classification: a survey,” IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev., vol. 30, no. 4, pp. 451–462, Nov. 2000, doi: 10.1109/5326.897072.
[21] N. Zaeri, “Minutiae-based Fingerprint Extraction and Recognition,” 2011.
[22] D. Peralta et al., “A survey on fingerprint minutiae-based local matching for verification and identification: Taxonomy and experimental evaluation,” Inf. Sci. (Ny)., vol. 315, 2015, doi: 10.1016/j.ins.2015.04.013.
[23] K. Tiwari, S. Mandi, and P. Gupta, “A Heuristic Technique for Performance Improvement of Fingerprint Based Integrated Biometric System,” 2013, vol. 7995, pp. 584–592, doi: 10.1007/978-3-642-39479-9_68.
[24] S. H. Bhati and U. C. Pati, “Novel algorithm for fingerprint mosaicing using phase correlation method,” in 2015 Global Conference on Communication Technologies (GCCT), Apr. 2015, pp. 29–33, doi: 10.1109/GCCT.2015.7342618.
[25] G.-I. Ri, C.-G. Ri, and S.-R. Ji, “A Fingerprint Indexing Method Based on Minutia Descriptor and Clustering.” 2018.
[26] M. A. Medina-Perez, M. Garcia-Borroto, A. E. Gutierrez-Rodriguez, and L. Altamirano-Robles, “Robust Fingerprint Verification Using M-Triplets,” in 2011 International Conference on Hand-Based Biometrics, Nov. 2011, pp. 1–5, doi: 10.1109/ICHB.2011.6094348.
[27] M. A. Medina-Pérez, M. García-Borroto, A. E. Gutierrez-Rodríguez, and L. Altamirano-Robles, “Improving fingerprint verification using minutiae triplets.,” Sensors (Basel)., vol. 12, no. 3, pp. 3418–3437, 2012, doi: 10.3390/s120303418.
[28] R. Kumar, “Orientation Local Binary Pattern Based Fingerprint Matching,” SN Comput. Sci., vol. 1, no. 2, p. 67, 2020, doi: 10.1007/s42979-020-0068-y.
[29] G. Fang, S. Srihari, H. Srinivasan, and P. Phatak, “Use of ridge points in partial fingerprint matching,” Proc. SPIE - Int. Soc. Opt. Eng., vol. 6539, 2007, doi: 10.1117/12.718941.
[30] K. Castillo-Rosado and J. Hernández-Palancar, “Ridge-Based Fingerprint Matching: A survey.” 2015.
[31] Y. Zhang, X. Yang, Q. Su, and J. Tian, “Fingerprint Recognition Based on Combined Features BT - Advances in Biometrics,” 2007, pp. 281–289.
[32] L. A. Ramos and A. N. Marana, “Fusion of Methods Based on Minutiae, Ridges and Pores for Robust Fingerprint Recognition,” ArXiv, vol. abs/1805.1, 2018.
[33] S. Malathi and C. Meena, “An utility of pores in partial fingerprint matching,” in 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Jun. 2011, pp. 965–968, doi: 10.1109/ICRTIT.2011.5972429.
[34] A. Jain, Y. Chen, and M. Demirkus, “Pores and ridges: high-resolution fingerprint matching using level 3 features,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 15–27, 2007, doi: 10.1109/TPAMI.2007.17.
[35] E. Tola, V. Lepetit, and P. Fua, “Daisy: An Efficient Dense Descriptor Applied to Wide Baseline Stereo,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 815–830, 2010, doi: 10.1109/TPAMI.2009.77.
[36] F. Turroni, “Fingerprint Recognition: Enhancement, Feature Extraction and Automatic Evaluation of Algorithms,” 2012.
[37] A. K. Jain, P. Flynn, and A. A. Ross, Handbook of Biometrics. Berlin, Heidelberg: Springer-Verlag, 2007.
[38] Manal Abdullah, Mona Alkhozae, and Mashaiel, “Fingerprint Matching Approach Based on Bifurcation Minutiae,” J. Inf. Commun. Technol., vol. 2, no. 5, pp. 2047–3168, 2012.
[39] U. Soni and G. Mahesh, “A Survey on State of the Art Methods of Fingerprint Recognition,” 2018.
[40] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain, FVC2002: Second Fingerprint Verification Competition, vol. 3. 2002.
[41] M. El-Abed, C. Charrier, and C. Rosenberger, “Evaluation of Biometric Systems,” New Trends Dev. Biometrics, Nov. 2012, doi: 10.5772/52084.
[42] A. Namboodiri, “MINUTIAE LOCAL STRUCTURES FOR FINGERPRINT INDEXING AND MATCHING,” 2013.
[43] I. Lucena et al., A simple and effective way to extract ROI in fingerprint images. 2011.
[44] E. Erwin, N. Karo, A. Sari, N. Aziza, and H. Putra, “The Enhancement of Fingerprint Images using Gabor Filter,” J. Phys. Conf. Ser., vol. 1196, p. 12045, Mar. 2019, doi: 10.1088/1742-6596/1196/1/012045.
[45] A. Jakubović and J. Velagić, “Image Feature Matching and Object Detection Using Brute-Force Matchers,” in 2018 International Symposium ELMAR, 2018, pp. 83–86, doi: 10.23919/ELMAR.2018.8534641.
[46] A. S. Arefin, C. Riveros, R. Berretta, and P. Moscato, “GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs,” PLoS One, vol. 7, p. e44000, Aug. 2012, doi: 10.1371/journal.pone.0044000.
[47] B. Jayaraman, Artificial Neural Networks - Theory and Applications. 2017.
[48] A. Taravat, S. Proud, S. Peronaci, F. Del Frate, and N. Oppelt, “Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking,” Remote Sens., vol. 7, no. 2, pp. 1529–1539, 2015, doi: 10.3390/rs70201529.
[49] P. Marius, V. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer perceptron and neural networks,” WSEAS Trans. Circuits Syst., vol. 8, Jul. 2009.
[50] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Mar. 2018.
[51] S. Çelik and Ö. Tan, “Determination of preconsolidation pressure with artificial neural network,” Civ. Eng. Environ. Syst., vol. 22, no. 4, pp. 217–231, 2005, doi: 10.1080/10286600500383923.
[52] H. Shaziya, “A Study of the Optimization Algorithms in Deep Learning,” Mar. 2020, doi: 10.1109/ICISC44355.2019.9036442.
[53] V. Melo, S. Leao, D. Menotti, and W. Schwartz, An Optimized Sliding Window Approach to Pedestrian Detection. 2014.
[54] C. Pal, A. Kotal, A. Samanta, A. Chakrabarti, and R. Ghosh, “Design space exploration for image processing architectures on FPGA targets,” Apr. 2014.
指導教授 王家慶(Jia-Ching Wang) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明