博碩士論文 109322026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.22.194.224
姓名 莊嬿齡(Yan-Ling Zhuang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 由RC構架受反覆荷載試驗結果探討RC梁耐震設計參數之研究
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 國內目前積極發展高強度鋼筋混凝土,但國內現行規範缺少針對高強度鋼筋混凝土之設計建議值,故利用數據分析統計得知高強度與普通強度鋼筋混凝土之耐震設計參數差異,是本研究主軸。此外,國內目前對於地震發展大小不同之地區,均採用相同超額強度設計值,缺少針對不同震度與設計值關係。故對於各震度之層間位移比與耐震超額強度因子關係之調查,亦是本研究探討課題之一。
本研究收集、整理及統計歷年來之 RC 梁受反覆載重下之相關數據進行分析與探討,並由梁主筋SD420、SD490與SD690分別代表普通強度與高強度鋼筋混凝土之RC梁。利用Paulay (1992)方式求取RC梁之有效勁度;再者,利用學者 Brooke (2011)統計方法,歸納鋼筋之材料超額強度因子與應變硬化超額強度因子,並探討應變硬化超額強度因子與各震度層間位移比之關係,同時比較普通與高強度RC梁之差異。
研究結果顯示,RC梁構件降伏時之有效慣性矩I_e隨混凝土抗壓強度之增加降低、隨構件之跨深比之增加而增加,且多數規範之建議值有偏高趨勢。而鋼筋應變硬化超額強度因子統計結果顯示,不同鋼筋級數之值無明顯差異,即其值大小與鋼種無關,但在層間變位角於1.5~4%間時,其隨層間位移比之增加有線性增加的趨勢,且ACI 318-19之建議值略低。
摘要(英) Taiwan uses the same seismic design values for areas with different earthquake intensity. In addition, Taiwan develops high-strength reinforced concrete in recent years, but the code does not have design values for high-strength. Therefore, the objective of the study is to investigate the difference between the seismic design values of high strength and normal strength RC beams, and to discuss their relationship with drift ratio.
This plan collects, organizes and analyzes the data tested from RC beams subjected to cyclic loading. Those beams having the longitudinal reinforcement of SD420, SD490 and SD690 represent as normal strength and high strength RC beams, respectively. The effective initial stiffness (K_{eff}) of the RC beam is obtained by adopting Paulay’s (1992) method. Meanwhile, the study adopted the Brooke’s (2011) method to calculate alpha_{mat} and alpha_{har} of the steel bar. The purpose of adopting Brooke’s method is to find the relationship between drift ratio and alpha_{har}, and their difference between normal strength and high-strength RC beams.
The results show that the effective moment of inertia (I_e) of the RC beam decreases with the increase of concrete compressive strength and increases with the increase of span-to-depth ratio, and the recommended value in some codes overestimates the actual value. The statistical results show that there is no significant difference in the value of the overstrength factor of strain hardening, that is, the value of alpha_{har} is independent of the steel grade, but it has a linear increasing with the increase of the drift ratio. Moreover, the recommended value of alpha_o in ACI 318-19 is too low.
關鍵字(中) ★ 鋼筋混凝土梁
★ 耐震設計
★ 超額強度因子
★ 有效勁度
★ 層間變位角
關鍵字(英) ★ RC beam
★ seismic design
★ overstrength factor
★ effective stiffness
★ drift ratio
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 xi
符號說明 xvi
第一章、諸論 1
1.1 研究動機 1
1.2 研究目的與方法 2
第二章、文獻回顧 3
2.1 材料性質 3
2.1.1 鋼筋之機械性質 3
2.1.2 混凝土材料性質 4
2.2 梁斷面撓曲強度分析 9
2.2.1 矩形梁 9
2.2.2 T型梁 10
2.3 塑鉸區超額彎矩與超額強度因子 11
2.3.1 影響超額強度之因素 17
2.3.2 超額強度之應用 19
2.4 有效勁度 20
2.4.1 現行規範對有效勁度之規定 22
2.4.2 影響有效勁度之因素 24
2.5 梁柱接頭變位組成 26
第三章、研究方法 27
3.1 資料庫建置 27
3.2 試體設置類型 28
3.3 數據前處理 28
3.4 超額強度因子之調查 29
3.4.1 材料超額強度因子 29
3.4.2 應變硬化超額強度因子 30
3.5 有效慣性矩之調查 31
3.6 資料分析之方式 33
第四章、統計結果 36
4.1 混凝土彈性模數預測 37
4.2 有效慣性矩統計結果 37
4.3 材料超額強度因子統計結果 41
4.4 應變硬化超額強度因子統計結果 42
第五章、討論 45
5.1 有效慣性矩探討 45
5.2 材料超額強度因子探討 54
5.3 應變硬化超額強度因子探討 54
5.4 超額強度因子探討 58
第六章、結論與建議 61
6.1 結論 61
6.2 建議 62
參考文獻 64
附錄A 梁塑性彎矩計算與剪力需求設計例[47] 141
附錄B 試體實際標稱強度計算 144
附錄C 統計結果詳細數據 147
附錄D 資料庫文獻 211
參考文獻 [1] ACI Committee 318, Building Code Requirement for Structural Concrete (ACI 318-19), American Concrete Institute (2019).
[2] 中國土木水利工程學會,《混凝土工程設計規範與解說(土木 401 - 110)》,初版,科技圖書,台北 (2021)。
[3] N.J. Brooke, “The Effect of Reinforcement Strength on the Overstrength Factor for Reinforced Concrete Beams,” 9th Pacific Conference on Earthquake Engineering, New Zealand, pp. 69-79 (2011).
[4] 經濟部標準檢驗局,《CNS 560鋼筋混凝土用鋼筋》,中華民國國家標準 (2018)。
[5] ASTM A706/A706M-16, “Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA (2016).
[6] ASTM A615/A615M-20, “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA (2020).
[7] Japanese Industrial Standards Committee, Standards Board & Technical Committee on Iron and Steel, “Steel Bars for Concrete Reinforcement (JIS G 3112:2010),” Japanese Standards Association, Tokyo (2010).
[8] Barcley, Leo B, “Seismic Performance of A706-80 Reinforced Concrete Columns and Critical Bending Strain of Longitudinal Reinforcement,” North Carolina State University, master′s thesis (2018).
[9] 林祈詮,「高強度混凝土於鋼筋混凝土撓曲桿件往復載重行為研究」,國立臺灣科技大學,碩士論文 (2020)。
[10] ACI Committee 439, Guide for the Use of ASTM A1035/A1035M Type CS Grade 100 (690) Steel Bars for Structural Concrete (ACI 439.6R-19), American Concrete Institute, pp. 4 (2019).
[11] 游凱翔,「高拉力鋼筋混凝土梁塑性鉸位置外移設計之研究」,國立中央大學,碩士論文 (2017)。
[12] ACI Committee 363, State-of-the-Art Report on High-Strength Concrete, American Concrete Institute, pp. 23 (1997).
[13] NZS3101, Concrete Structural Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zealand Standard (2006).
[14] ACI Committee 363, State-of-the-Art Report on High-Strength Concrete, American Concrete Institute, pp. 24-26 (2010).
[15] J.J. Myers, & Y. Yang, High Performance Concrete for Bridge A6130-Route 412, Report No.RDT 04-016, Center for Infrastructure Engineering Studies, Missouri University of Science and Technology, Rolla, MO, pp.100 (2004).
[16] J.J. Myers, and R.L. Carrasquillo, The Production and Quality Control of High Performance Concrete in Texas Bridge Structures, Report No. FHWA/TX-05/9-580/589-1, Center for Transportation Research, University of Texas at Austin, Austin, TX, Dec., pp. 233 (1998).
[17] 廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程,第三十一卷,第三期,pp.5-31,台北 (2016)。
[18] 廖文正、胡瑋秀,「台灣高強度混凝土彈性模數預估公式研究」,結構工程,第三十二卷,第三期,pp.5-26,台北 (2017)。
[19] 日本建築学会,《鉄筋コングリート構造計算規準∙同解説》,AIJ規準 (2010)。
[20] ACI Innovation Task Group 4, Report on Structural Design & Detailing for High Strength Concrete in Moderate to High Seismic Applications, American Concrete Institute (2007).
[21] 中華民國結構工程學會,《高強度鋼筋混凝土結構設計手冊》,初版,科技圖書,台北 (2017)。
[22] Aoyama, H., Design of Modern Highrise Reinforced Concrete Structures, Imperial College Press, pp.136-141 (2001).
[23] Paulay, T., and Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Building, John Wiley & Sons, New York (1992).
[24] 王勇智、周延、鄭敏元、林克強、洪立彥、何立文,「高強度鋼筋混凝土梁撓曲與剪力設計參數之探討」,中國土木水利工程學刊,第三十卷,第三期,pp. 163-170,台北 (2018)。
[25] 陳正誠、黃世建、李宏仁,「台灣熱軋竹節及水淬鋼筋之機械性質與超額降伏強度係數」,中國土木水利工程學刊,Vol.12,No.2,pp. 233- 238 (2000)。
[26] AASHTO-1992, Standard Specifications for Highway Bridges, Fifteenth Edition, Washington, D. C, p. 686 (1992).
[27] Corley, W.G., Hanson, J.M., and Helgason, T., “Design of reinforced concrete for fatigue,” Journal of Structural Division, Proceedings, ASCE, Vol.104, No.ST6, pp.921-932 (1978).
[28] 經濟部標準檢驗局,《CNS 560鋼筋混凝土用鋼筋》,中華民國國家標準 (1997)。
[29] T. Andriono and R. Park, “Seismic Design Considerations of New Zealand Manufactured Steel Reinforcing Bars,” Bulletin of the New Zealand National Society for Earthquake Engineering, pp. 213-246 (1986).
[30] C. J. Allington, C. MacPherson, & D. Bull, Flexural Overstrength Factor for Pacific Steel Grade 500E Reinforcement, Holmes Solutions, Christchurch, New Zealand (2006).
[31] Kien Le-Trung, Kihak Lee, Myoungsu Shin & Jaehong Lee, “Seismic Performance Evaluation of RC Beam-Column Connections in Special and Intermediate Moment Frames,” Journal of Earthquake Engineering, 17:2, pp.187-208 (2013).
[32] Saddam M. Ahmed, Umarani Gunasekaran & Gregory A. MacRae, “Effect of slab and transverse beam on R.C. beam column joint,” International Conference on Earthquake Analysis and Design of Structures (2011).
[33] P. Cheung, T. Paulay, and R. Park, Interior and exterior reinforced concrete beam-column joints of a prototype two-way frame with floor slab designed for earthquake resistance, Research Report, 89-2, University of Canterbury, New Zealand (1989).
[34] Prafulla B MALLA, Hong ZHOU & Yi CHE, “Cyclic Flexural Behavior of Reinforced Concrete Beams,” The previous 4th International Conference on Energy Materials and Environment Engineering (2018).
[35] T.O. Tang, and R.K. Su, “Shear and Flexural Stiffnesses of Reinforced Concrete Shear Walls Subjected to Cyclic Loading,” The Open Construction and Building Technology Journal, Vol.8 (2014).
[36] Eyitayo A. Opabola, Kenneth J. Elwood, “Simplified Approaches for Estimating Yield Rotation of Reinforced Concrete Beam-Column Components,” ACI Structural Journal, Vol 117, No.4, pp.279-289 (2020).
[37] ASCE/SEI 41-17, Seismic evaluation and retrofit of existing buildings, American Society of Civil Engineers (2017).
[38] FEMA, Quantification of Building Seismic Performance Factors (FEMA P-695), prepared by Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C (2009).
[39] Ö. Avşar, B. Bayhan & A. Yakut, “Effective flexural rigidities for ordinary reinforced concrete columns and beams, The Structural Design of Tall and Special Buildings,” Vol. 23, Issue 6, pp.463-482 (2014).
[40] Jung-Yoon Lee, Jongwook Park & Changhyuk Kim, “Deformations of Reinforced Concrete Beam-Column Joint Assemblies,” Magazine of Concrete Research, Vol. 72, Issue 13, pp. 649-669 (2020).
[41] 廖于興,「New RC梁撓曲剪力設計研究」,國立中央大學,碩士論文 (2015)。
[42] 郭青翰,「新高強度鋼筋混凝土梁柱接頭耐震性能研究」,國立雲林科技大學,碩士論文 (2011)。
[43] 丸田 誠、境治彦,「超高層RCを対象としたプレキャスト骨組の実験的研究」,コンクリート上学年次論文集,Vol.23,No.3 (2001)。
[44] Durrani, A. J. & Zerbe, H. E., “Seismic resistance of RC exterior connections with floor slab,” Journal of Structural Engineering, ASCE 113(8), pp.1850–1864 (1987).
[45] 紀盈綺,「鋼筋混凝土梁柱接頭耐震試驗資料庫建構與參數分析」,國立雲林科技大學,碩士論文 (2012)。
[46] 內政部營建署,《結構混凝土施工規範》,中華民國國家標準 (2021)。
[47] 柳文皓,「具橫向梁及版之新高強度鋼筋混凝土內部接頭耐震性能測試」,國立雲林科技大學,碩士論文 (2016)。
[48] 中國土木水利工程學會混凝土工程委員會,《混凝土工程設計規範之應用(土木404-100) 》,初版,科技圖書,台北 (2011)。
指導教授 王勇智(Yung-Chih Wang) 審核日期 2021-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明