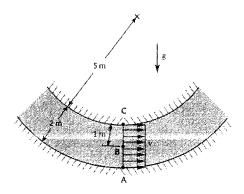
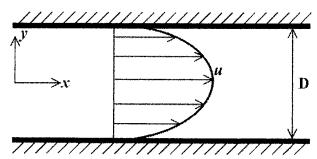
國立中央大學 111 學年度碩士班考試入學試題

所別: 機械工程學系碩士班 熱流組(一般生)


共2頁 第/頁

科目: 流體力學及熱傳學


1. Silicone oil, with density of 0.963 g/cm³, flows around the vertical bend. The streamlines are circular as indicated in the figure below. The flow is assumed as two-dimensional with constant and uniform velocity of 12 m/s. If the pressure is 80 kPa at Point A, determine

(a) the pressure at Point B. (13%)

(b) the pressure at Point C. (12%)

2. Consider a fully developed Couette flow: Flow between two infinite parallel plates driven by a pressure gradient $\frac{\partial P}{\partial x}$, as sketched below. Flow is in the x-direction only with a velocity u (no flow in the y and z directions). Both plates are stationary. Buoyancy is neglected.

(a) Find the basic governing equation for this flow by simplifying the incompressible Navier-Stokes equation in the x-direction as given below. (13%)

 $\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g_x - \frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$

- (b) Solve the basic equation found in (a) to obtain u as a function of y. (12%)
- 3. A plane wall of thickness L, thermal conductivity k has its surface at x = 0 insulated. Heat is generated within the wall at a rate of

 $q(x) = q_0 \cos \frac{\pi x}{2L}$ in unit of W/m³,

where q_0 is the heat generation rate per unit volume at x = 0.

- (a) Consider that the wall surface at x = L is kept at constant temperature T_L . Develop an expression for the one-dimensional, steady-state temperature distribution in the wall. (10%)
- (b) Further, the wall surface at x = L is attached to a base kept at constant temperature T_B . The thermal contact resistance per unit area between the wall and the base is R". Develop an expression for T_L . (8%)

國立中央大學 111 學年度碩士班考試入學試題

所別: 機械工程學系 碩士班 熱流組(一般生)

共2頁 第2頁

科目: 流體力學及熱傳學

- 4. Consider the plane wall problem above. Assume the wall surface at x = L is directly subject to thermal radiation, and the surroundings are kept at constant temperature T_{∞} . Develop an expression for T_L . (7%)
- 5. Please sketch the velocity boundary layer and thermal boundary layer qualitatively of uniform flow over a flat plate from the left to the right hand side for (a) air and (b) water. (6%)
- 6. Air at temperature of 300 K and velocity of 6.0 m/s flows over a heating surface at temperature of 400 K. The length and width of the plate are 2.0 m and 0.5 m respectively.

(a) What temperature should you use for evaluating the fluid properties? (2%)

(b) Is it a laminar flow or turbulent flow at the end of the plate (x=2.0 m)? (3%)

(c) Calculate the local heat transfer coefficient at the midpoint (x=1.0 m) of the plate. (5%)

7. Air at temperature of 350 K and mass flow rate of 10 kg/hr is heated in a circular tube at constant wall temperature of 450 K and leaves at 400 K. The tube inside diameter is 10 mm. Please calculate the heat transfer coefficient at fully developed region. (9%)

Air properties and useful equations are listed below:

Temperature (K)	ρ (kg/m 3)	cp (kJ/kg·K)	μ (N·s/m²)	k (W/m·K)
300	1.1614	1.007	184.6 x 10 ⁻⁷	0.0263
350	0.9950	1.009	208.2 x 10 ⁻⁷	0.0300
400	0.8711	1.014	230.1 x 10 ⁻⁷	0.0338
450	0.7740	1.021	250.7 x 10 ⁻⁷	0.0373

Nu = 4.36 for q'' = constant

Nu = 3.66 for $T_w = constant$

 $Nu = 0.332 \, Re^{0.5} \, Pr^{1/3}$

 $Nu = 0.0296 \, Re^{0.8} \, Pr^{1/3}$

 $Nu = 0.023 \, Re^{0.8} \, Pr^n$, where n = 0.3 for cooling, n = 0.4 for heating

 $Nu = 0.023 \, Re^{0.8} \, Pr^{1/3}$

$$Nu = 0.027 \, Re^{0.8} \, Pr^{1/3} \Bigg(\frac{\mu}{\mu_s} \Bigg)^{0.14}$$