參考文獻 |
Mikulic, M. Revenue of the worldwide pharmaceutical market from. (May 4, 2014), 2001 to 2020. https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/ (accessed Dec 12, 2021)
Semiconductor Industry Association, Global Semiconductor Sales Increase 6.5% to $439 billion in 2020. (Feb 1, 2021), https://www.semiconductors.org/global-semiconductor-sales-increase-6-5-to-439-billion-in-2020/ (accessed Dec 29,2021)
Alsop, T. Semiconductor industry revenue worldwide from 2012 to 2020. (Nov 23, 2021). https://www.statista.com/statistics/272872/global-semiconductor-industry-revenue-forecast/ (accessed Dec 29, 2021)
https://www.efpia.eu/media/602709/the-pharmaceutical-industry-in-figures-2021.pdf (accessed Dec 29, 2021)
Nicola, G.; Hector, H. G.; Alexander, T.; Sara, A.; Mafini, D.; Aliki, G.; Francesco, P. (Jan 1, 2021). https://iri.jrc.ec.europa.eu/scoreboard/2020-eu-industrial-rd-investment-scoreboard (accessed Dec 29, 2021)
Definition of active pharmaceutical ingredient, (2011), World Health Organization.
Wouters, O. J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Jama 2020, 323(9), 844-853.
DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016, 47, 20-33.
Taylor, D. The pharmaceutical industry and the future of drug development. 2015, 1-33.
Ng, R. Drug: From Discovery to Approval; 3rd Ed.; John Wiley & Sons, Inc., 2015; pp. 1-22.
Lee, H. L. Novel crystallization processes for preparing various crystal forms of active pharmaceutical ingredients. PhD dissertation, National Central University, Zhongli District, Taoyuan City, R. O. C., 2018.
Chen, C. W. Process Intensification for Pharmaceutical Granules Preparation Using Spherical Agglomeration. PhD dissertation, National Central University, Zhongli District, Taoyuan City, R. O. C., 2020.
Nováková, L.; Douša, M.; Pekárek, T.; Mitašík, L. Pharmaceutical analysis | Overview. In encyclopedia of analytical science, 3rd Ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M. Academic Press; Elsevier: 2019; 8, pp. 200-218.
Mullin J. W. Crystallization, 4th edition; Butterworth-Heinemann: London, 2001.
Mason, B. J. The supercooling and nucleation of water. Adv. Phys. 1958, 7(26), 221-234.
Lee, T.; Yeh, K. L.; You, J. X; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible crystallization of sodium dodecyl sulfate·1/8 hydrate by evaporation, antisolvent addition, and cooling. ACS Omega 2020, 5(2), 1068-1079
Tung, H. H.; Paul, E. L.; Midler, M.; McCauley, J. A. Crystallization of organic compounds: An Industrial perspective, John Wiley & Sons, Inc. New Jersey, 2008.
Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42(5), 621-629.
Korovessi, E.; Linninger, A. A. Batch process, Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2006; pp 7-39.
Chen, J.; Sarma, B.; Evans, J. M.; Myerson, A. S. Pharmaceutical crystallization. Cryst. Growth Des. 2011, 11(4), 887-895.
Jiang, M.; Zhu, Z.; Jimenez, E.; Papageorgiou, C. D.; Waetzig, J.; Hardy, A. Langston, M.; Braatz, R. D. Continuous-flow tubular crystallization in slugs spontaneously induced by hydrodynamics. Cryst. Growth Des. 2014, 14(2), 851-860.
Zhang, H.; Quon, J.; Alvarez, A. J.; Evans, J.; Myerson, A. S.; Trout, B. Development of continuous anti-solvent/cooling crystallization process using cascaded mixed suspension, mixed product removal crystallizers. Org. Proc. Res. Dev. 16(5), 915-924.
Zhang, D.; Xu, S.; Du, S.; Wang, J.; Gong, J. Progress of pharmaceutical continuous crystallization. Engineering 2017, 3(3), 354-364.
Lai, T. T. C.; Ferguson, S.; Palmer, L.; Trout, B. L.; Myerson, A. S. Continuous crystallization and polymorph dynamics in the L-glutamic acid system. Org. Proc. Res. Dev. 2014, 18(11), 1382-1390.
Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015, 20(10), 18759-18776.
Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. 2016, 52(4), 640-655.
Almarsson, Ö.; Vadas, E. B. Molecules, Materials, Medicines (M3): Linking molecules to medicines through pharmaceutical material science. Cryst. Growth Des. 2015, 15(12), 5645-5647.
Brittain, H. G. Polymorphism and solvatomorphism 2010. J. Pharm. Sci. 2012, 101(2), 464-484.
Gu, C. H.; Young Jr, V.; Grant, D. J. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90(11), 1878-1890.
Yang, X.; Wang, X.; Ching, C. B. Solubility of Form α and Form γ of Glycine in Aqueous Solutions. J. Chem. Eng. Data 2008, 53(5), 1133-1137.
Ferrari, E. S.; Davey, R. J.; Cross, W. I.; Gillon, A. L.; Towler, C. S. Crystallization in polymorphic systems: The solution-mediated transformation of β to α glycine. Cryst. Growth Des. 2003, 3(1), 53-60.
Munroe, A.; Rasmuson, Å. C.; Hodnett, B. K.; Croker, D. M. Relative stabilities of the five polymorphs of sulfathiazole. Cryst. Growth Des. 2012, 12(6), 2825-2835.
Lee, H. L.; Cheng, Y. S.; Yeh, K. L.; Lee, T. A novel hydrate form of sodium dodecyl sulfate and its crystallization process. ACS Omega, 2021, 6(24),15770-15781.
Nogueira, B. A.; Castiglioni, C.; Fausto, R. Color polymorphism in organic crystals. Commun. Chem. 3(1), 1-12.
Gutiérrez, T. J. State‐of‐the‐art chocolate manufacture: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16(6), 1313-1344.
Wille, R. L.; Lutton, E. S. Polymorphism of cocoa butter. J. Am. Oil Chem. Soc. 1966, 43(8), 491-496.
Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Babić, J. The chemistry behind chocolate production. Molecules 2019, 24(17), 3163.
Gupta, H.; Kumar, S.; Roy, S. K.; Gaud, R. S. Patent protection strategies. J. Pharm. BioAllied Sci. 2010, 2(1), 2.
Lee, E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9(4), 163-175.
Ostwald, W. Studien über die bildung und umwandlung fester körper. Z Phys Chem. 1897, 22(1), 289-330.
Yang, J.; Zhu, X. Hu, C. T.; Qiu, M.; Zhu, Q.; Ward, M. D.; Kahr, B. Inverse correlation between lethality and thermodynamic stability of contact insecticide polymorphs. Cryst. Growth Des. 2019, 19(3), 1839-1844.
P. H. Karpinski, Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol., 2006, 29(2), 233-237.
Miller, J. M.; Collman, B. M.; Greene, L. R.; Grant, D. J.; Blackburn, A. C. Identifying the stable polymorph early in the drug discovery–development process. Pharm. Dev. Tech. 2005, 10(2), 291-297.
Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan, B.A.; Soldani, M.; Riley, D.; McFarland, K. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Proc. Res. Dev. 2000, 4(5), 413-417.
Bučar, D. K.; Lancaster, R. W.; Bernstein, J. Disappearing polymorphs revisited. Angew. Chem. Int. Ed. 2015, 54(24), 6972-6993.
Zhou, Z.; Chan, H. M.; Sung, H. H. Y.; Tong, H. H.; Zheng, Y. Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharm. Res. 2016, 33(4), 1030-1039.
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453(1), 101-125.
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009, 9(6), 2950-2967.
Sarcevica, I.; Orola, L.; Veidis, M. V.; Podjava, A.; Belyakov, S. Crystal and molecular structure and stability of isoniazid cocrystals with selected carboxylic acids. Cryst. Growth Des. 2013, 13(3), 1082-1090.
Lu, J.; Rohani, S. Preparation and characterization of theophylline-nicotinamide cocrystal. Org. Proc. Res. Dev. 2009, 13(6), 1269-1275.
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419(1-2), 1-11.
Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: Voriconazole as a case study. Mol. Pharm. 2015, 12(3), 889-897.
Sanphui, P.; Devi, V. K.; Clara, D.; Malviya, N.; Ganguly, S.; Desiraju, G. R. Cocrystals of hydrochlorothiazide: Solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol. Pharm. 2015, 12(5), 1615-1622.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225, 809-817.
Braga, D; Grepioni, F.; Maini, L.; P. Mazzeo, P.; Rubini, K. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin. Thermochim. Acta 2010, 507-508, 1-8.
Takata, N.; Shiraki, K.; Takano, R.; Hayashi, Y.; Terada, K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst. Growth Des. 2008, 8(8), 3032-3037.
Bag, P. P.; Patni, M.; Reddy, C. M. A Kinetically controlled crystallization process for identifying new co-crystal forms: fast evaporation of solvent from solutions to dryness. CrystEngComm 2011, 13(19), 5650-5652.
Yu, Z. Q.; Chow, P. S.; Tan, R. B. H. Operating regions in cooling cocrystallization of caffeine and glutaric acid in acetonitrile. Cryst. Growth Des. 2010, 10(5), 2382-2387.
Wang, I.-C.; Lee, M.-J.; Sim, S.-J.; Kim, W.-S.; Chun, N.-H. Choi, G. J. Anti-solvent co-crystallization of carbamazepine and saccharin. Int. J. Pharm. 2013, 450, 311-322.
Alhalaweh, A.; Velaga, S. P. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des. 2010, 10(8), 3302-3305.
Lee, H. L.; Lee, T. Direct co-crystal assembly from synthesis to cocrystallization. CrystEngComm 2015, 17(47), 9002-9006.
Challener, C. A. Scientific advances in cocrystals are offset by regulatory uncertainty. Pharm. Technol. 2014, 38, 1-3.
Dhumal, R. S.; Kelly, A. L.; York, P.; Coates, P. D.; Paradkar, A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm. Res. 2010, 27(12), 2725-2733.
am Ende, D. J.; Anderson, S. R.; Salan, J. S. Development and scale-up of cocrystals using resonant acoustic mixing. Org. Process Res. Dev. 2014, 18(2), 331-341.
Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discovery Today 2018, 24(3), 796-804.
Kumar, A., Kumar, S.; Nanda, A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv. Pharm. Bull. 2018, 8(3), 355.
Food and Drug Administration (2018) Guidance for Industry – Regulatory Classification of Pharmaceutical Cocrystals. FDA
Reflection paper on the use of cocrystals of active substances in medicinal products. Committee for Medicinal Products for Human Use. European Medicines Agency. 2015.
Lei, Y. L.; Liao, L. S.; Lee, S. T. Selective growth of dual-color-emitting heterogeneous microdumbbells composed of organic charge-transfer complexes. J. Am. Chem. Soc. 2013, 135(10), 3744-3747.
Bethune, S. J.; Schultheiss, N.; Henck, J. O. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Cryst. Growth Des. 2011, 11(7), 2817-2823.
Harfouche, L. C.; Brandel, C.; Cartigny, Y.; Petit, S., Coquerel, G. Resolution by Preferential Crystallization of Proxyphylline by Using Its Salicylic Acid Monohydrate Co‐Crystal. Chem. Eng. Tech. 2020, 43(6), 1093-1098.
Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous co-crystallization as a separation technology: the study of 1:2 co-crystals of phenazine-vanillin. Cryst. Growth Des. 2012, 12(12), 5897-5907.
https://www.fda.gov/drugs/information-drug-class/acetaminophen-information (accessed Dec 13, 2021)
Brune, K.; Renner, B.; Tiegs, G. Acetaminophen/paracetamol: A history of errors, failures and false decisions. Eur. J. Pain, Suppl. 2015, 19(7), 953-965.
https://www.marketwatch.com/press-release/global-paracetamol-market-size-in-2021-growth-by-forthcoming-developments-industry-scope-opportunity-business-strategy-and-covid-19-market-scenario-report-by-industry-research-biz-2021-11-09 (accessed Dec 13, 2021)
Goscianska, J.; Olejnik, A.; Ejsmont, A.; Galarda, A.; Wuttke, S. Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. J. Colloid Interface Sci. 2021, 586, 673-682.
https://www.campaignasia.com/article/taiwans-top-100-brands-japanese-brands-still-the-most-trusted/453984 (accessed Dec 13, 2021)
Sohrabi, C.; Alsafi, Z.; O′neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71-76.
Haїsa, M.; Kashino, S.; Kawai, R.; Maeda, H. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, 32(4), 1283-1285.
Panini, P.; Chopra, D. Quantitative insights into energy contributions of intermolecular interactions in fluorine and trifluoromethyl substituted isomeric N-phenylacetamides and N-methylbenzamides. CrystEngComm, 2013, 15(18), 3711-3733.
Haїsa, M.; Kashino, S.; Maeda, H. The orthorhombic form of phydroxyacetanilide. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1974, 30(10), 2510-2512.
Perrin, M.-A.; Neumann, M. A.; Elmaleh, H.; Zaske, L. Crystal structure determination of the elusive paracetamol Form III. Chem. Commun. 2009, (22), 3181-3183.
Smith, S. J.; Bishop, M. M.; Montgomery, J. M.; Hamilton, T. P.; Vohra, Y. K. Polymorphism in paracetamol: Evidence of additional forms IV and V at high pressure. J. Phys. Chem. A 2014, 118(31), 6068-6077.
Reiss, C. A.; van Mechelen, J. B.; Goubitzc, K.; Peschar, R. Reassessment of paracetamol orthorhombic Form III and determination of a novel low temperature monoclinic Form III-m from powder diffraction data. Acta Crystallogr. Sect. C: Struct. Chem. 2018, 74(3), 392-399.
Shtukenberg, A. G.; Tan, M.; Vogt-Maranto, L.; Chan, E. J.; Xu, W.; Yang, J.; Tuckerman, M. E.; Hu, C. T.; Kahr, B. Melt crystallization for paracetamol polymorphism. Cryst. Growth Des. 2019, 19(7), 4070-4080.
Parkin, A.; Parsons, S.; Pulham, C. R. Paracetamol monohydrate at 150 K. Acta Crystallogr. Sect. E. 2002, 58(12), o1345-o1347.
Fabbiani, F. P.; Allan, D. R.; David, W. I.; Moggach, S. A.; Parsons, S.; Pulham, C. R. High-pressure recrystallisation—A route to new polymorphs and solvates. CrystEngComm 2004, 6(82), 505-511.
McGregor, P. A.; Allan, D. R.; Parsons, S.; Pulham, C. R. Preparation and crystal structure of a trihydrate of paracetamol. J. Pharm. Sci. 2002, 91(5), 1308-1311.
Oswald, I. D.; Allan, D. R.; McGregor, P. A.; Motherwell, W. S.; Parsons, S.; Pulham, C. R. The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. Acta Crystallogr. Sect. B 2002, 58(6), 1057-1066.
Oswald, I. D.; Motherwell, W. S.; Parsons, S.; Pulham, C. R. A paracetamol–morpholine adduct. Acta Crystallogr. Sect. E 2002, 58(11), o1290-o1292.
Fabbiani, F. P.; Allan, D. R.; Dawson, A.; David, W. I.; McGregor, P. A.; Oswald, I. D.; Parsons, S. Pulham, C. R. Pressure-induced formation of a solvate of paracetamol. Chem. Comm. 2003, (24), 3004-3005.
Di Martino, P.; Guyot-Hermann, A. M.; Conflant, P.; Drache, M.; Guyot, J. C. A new pure paracetamol for direct compression: the orthorhombic form. Int. J. Pharm. 1996, 128(1-2), 1-8.
Joiris, E.; Di Martino, P.; Berneron, C.; Guyot-Hermann, A. M.; Guyot, J. C. Compression behavior of orthorhombic paracetamol. Pharm. Res. 1998, 15(7), 1122-1130.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Ikeda, K.; Fukukita, S.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H. Inoue, T.; Yoshimura, M.; Mori, Y. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation. Appl. Phys. Express 2015, 8(6), 065501.
Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: The study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
Kachrimanis, K.; Fucke, K.; Noisternig, M.; Siebenhaar, B.; Griesser, U. J. Effects of moisture and residual solvent on the phase stability of orthorhombic paracetamol. Pharm. Res, 2008, 25(6), 1440-1449.
Telford, R.; Seaton, C. C.; Clout, A.; Buanz, A.; Gaisford, S.; Williams, G. R.; Prior, T. J.; Okoye, C. H.; Munshi, T.; Scowen, I. J. Stabilisation of metastable polymorphs: The case of paracetamol form III. Chem. Commun. 2016, 52(81), 12028-12031.
Cruz, P. C.; Rocha, F. A.; Ferreira, A. M. Application of selective crystallization methods to isolate the metastable polymorphs of paracetamol: A review. Org. Proc. Res. Dev. 2019, 23(12), 2592-2607.
Peterson, M. L.; Morissette, S. L.; McNulty, C.; Goldsweig, A.; Shaw, P.; LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Gonzalez-Zugasti, J.; Lemmo, A. V.; Ellis, S. J.; Cima, M. J.; Almarsson, Ö. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J. Am. Chem. Soc. 2002, 124(37), 10958-10959.
Di Profio, G.; Tucci, S.; Curcio, E.; Drioli, E. Controlling polymorphism with membrane-based crystallizers: Application to form I and II of paracetamol. Chem. Mater. 2007, 19(10), 2386-2388.
Sudha, C.; Parimaladevi, P.; Srinivasan, K. A novel method for the separation of mono and ortho polymorphs of paracetamol in gel matrix. Mater. Sci. Eng. C 2015, 47, 150-155.
Mikhailenko, M. A. Growth of large single crystals of the orthorhombic paracetamol. J. Cryst. Growth 2004, 265(3-4), 616-618.
Méndez del Río, J. R.; Rousseau, R. W. Batch and tubular-batch crystallization of paracetamol: Crystal size distribution and polymorph formation. Cryst. Growth Des. 2006, 6(6), 1407-1414.
Sudha, C.; Srinivasan, K. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process. J. Cryst. Growth 2014, 401, 248-251.
Sudha, C. Srinivasan, K. Supersaturation dependent nucleation control and separation of mono, ortho and unstable polymorphs of paracetamol by swift cooling crystallization technique. CrystEngComm 2013, 15(10), 1914-1921
Nichols, G.; Frampton, C. S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 1998, 87(6), 684-693.
Al-Zoubi, N.; Kachrimanis, K.; Malamataris, S. Effects of harvesting and cooling on crystallization and transformation of orthorhombic paracetamol in ethanolic solution. Eur. J. Pharm. Sci., 2002, 17(1-2), 13-21.
Al-Zoubi, N.; Malamataris, S. Effects of initial concentration and seeding procedure on crystallisation of orthorhombic paracetamol from ethanolic solution. Int. J. Pharm. 2003, 260(1), 123-135.
Al-Zoubi, N., Nikolakakis, I., Malamataris, S. Crystallization conditions and formation of orthorhombic paracetamol from ethanolic solution. J. Pharm. Pharmacol. 2002, 54(3), 325-333.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H.; Inoue, T.; Yoshimura, M.; Mori, Y. Metastable crystal growth of acetaminophen using solution-mediated phase transformation. Appl. Phys. Express 2017, 10(1), 015501.
Nicoud, L.; Licordari, F.; Myerson, A. S. Polymorph control in batch seeded crystallizers. A case study with paracetamol. CrystEngComm 2019, 21(13), 2105-2118.
Capes, J. S.; Cameron, R. E. Contact line crystallization to obtain metastable polymorphs. Cryst. Growth Des. 2007, 7(1), 108-112.
Capes, J. S. Cameron, R. E. Effect of polymer addition on the contact line crystallisation of paracetamol. CrystEngComm 2007, 9(1), 84-90.
Lang, M.; Grzesiak, A. L.; Matzger, A. J. The use of polymer heteronuclei for crystalline polymorph selection. J. Am. Chem. Soc. 2002, 124(50), 14834-14835.
Chadwick, K.; Myerson, A.; Trout, B. Polymorphic control by heterogeneous nucleation-A new method for selecting crystalline substrates. CrystEngComm 2011, 13(22), 6625-6627.
Sudha, C.; Nandhini, R.; Srinivasan, K. Polymer-induced selective nucleation of mono or ortho polymorphs of paracetamol through swift cooling of boiled aqueous solution. Cryst. Growth Des. 2014, 14(2), 705-715.
Thomas, L. H.; Wales, C.; Wilson, C. C. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chem. Commun. 2016, 52(46), 7372-7375.
Ehmann, H. M.; Werzer, O. Surface mediated structures: Stabilization of metastable polymorphs on the example of paracetamol. Cryst. Growth Des. 2014, 14(8), 3680-3684.
Bolla, G.; Myerson, A. S. SURMOF induced polymorphism and crystal morphological engineering of acetaminophen polymorphs: Advantage of heterogeneous nucleation. CrystEngComm 2018, 20(15), 2084-2088.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H.; Inoue, T.; Yoshimura, M.; Mori, Y. Crystallization of acetaminophen form II by plastic-ball-assisted ultrasonic irradiation. Appl. Phy. Express 2017, 10(2), 025501.
Kaur Bhangu, S.; Ashokkumar, M.; Lee, J. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 2016, 16(4), 1934-1941.
Lee, H. L.; Lin, H. Y.; Lee, T. Large-scale crystallization of a pure metastable polymorph by reaction coupling. Org. Process Res. Dev. 2014, 18(4), 539-545.
Thomas, L. H.; Wales, C.; Zhao, L.; Wilson, C. C. Paracetamol form II: An elusive polymorph through facile multicomponent crystallization routes. Cryst. Growth Des. 2011, 11(5), 1450-1452.
Agnew, L. R.; Cruickshank, D. L.; McGlone, T.; Wilson, C. C. Controlled production of the elusive metastable form II of acetaminophen (paracetamol): A fully scalable templating approach in a cooling environment. Chem. Commun. 2016, 52(46), 7368-7371.
Agnew, L. R.; McGlone, T.; Wheatcroft, H. P.; Robertson, A.; Parsons, A. R.; Wilson, C. C. Continuous crystallization of paracetamol (acetaminophen) form II: Selective access to a metastable solid form. Cryst. Growth Des. 2017, 17(5), 2418-2427.
Nicoud, L.; Licordari, F.; Myerson, A. S. Polymorph Control in MSMPR Crystallizers. A Case Study with Paracetamol. Org. Proc. Res. Dev. 2019, 23(5), 794-806.
Liu, Y.; Gabriele, B.; Davey, R. J.; Cruz-Cabeza, A. J. Concerning elusive crystal forms: The case of paracetamol. J. Am. Chem. Soc. 2020, 142(14), 6682-6689.
Beckmann, W. Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org. Proc. Res. Dev. 2000, 4(5). 372-383.
Lee, T., Chang, S. C. Sublimation point depression of small-molecule semiconductors by sonocrystallization. Cryst. Growth Des. 2009, 9(6), 2674-2684.
Thompson, C.; Davies, M. C.; Roberts, C. J.; Tendler, S. J.; Wilkinson, M. J. The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. Int. J. Pharm. 2004, 280(1-2), 137-150.
Lee, E. H.; Byrn, S. R.; Carvajal, M. T. Additive-induced metastable single crystal of mefenamic acid. Pharm Res. 2006, 23(10), 2375-2380.
Mo, Y.; Dang, L.; Wei, H. L-glutamic acid polymorph control using amino acid additives. Ind. Eng. Chem. Res. 2001, 50(18), 10385-10392.
Simone, E.; Steele, G.; Nagy, Z. K. Tailoring crystal shape and polymorphism using combinations of solvents and a structurally related additive. CrystEngComm 2015, 17(48), 9370-9379.
Kelleher, J. M.; Lawrence, S. E.; Moynihan, H. A. Effect of the steric demand and hydrogen bonding capability of additives on the crystal polymorphism of sulfathiazole. CrystEngComm 2006, 8(4), 327-332.
Kaskiewicz, P. L.; Rosbottom, I.; Hammond, R. B.; Warren, N. J.; Morton, C.; Dowding, P. J.; George, N. Roberts, K. J. Understanding and designing tailor-made additives for controlling nucleation: Case study of p-aminobenzoic acid crystallizing from ethanolic solutions. Cryst. Growth Des.2021, 21(4), 1946-1958.
Gu, C. H.; Chatterjee, K.; Young Jr, V.; Grant, D. J. Stabilization of a metastable polymorph of sulfamerazine by structurally related additives. J. Cryst. Growth 2002, 235(1-4), 471-481
Li, Z., Shi, P.; Yang, Y.; Sun, P.; Wang, Y.; Xu, S.; Gong, J. Tuning crystallization and stability of the metastable polymorph of dl-methionine by a structurally similar additive. CrystEngComm 2019, 21(24), 3731-3739.
Urwin, S. J.; Yerdelen, S.; Houson, I.; ter Horst, J. H. Impact of impurities on crystallization and product quality: A case study with paracetamol. Crystals 2021, 11(11), 1344.
Keshavarz, L.; Steendam, R. R.; Blijlevens, M. A.; Pishnamazi, M.; Frawley, P. J. Influence of impurities on the solubility, nucleation, crystallization, and compressibility of paracetamol. Cryst. Growth Des. 2019, 19(7), 4193-4201.
Heffernan, C.; Ukrainczyk, M.; Zeglinski, J.; Hodnett, B. K.; Rasmuson, Å. C. Influence of structurally related impurities on the crystal nucleation of curcumin. Cryst. Growth Des. 2018, 18(8), 4715-4723.
Hsueh, J. C.; Yeh, K. L.; Lee, H. L.; Lee, T. Strategy for polymorphic control by enzymatic reaction and antisolvent crystallization: Effect of aminoacylase on metastable β-glycine formation. React. Chem. Eng. 2021, 6(12), 2292-2305.
Saleemi, A.; Onyemelukwe, I. I.; Nagy, Z. Effects of a structurally related substance on the crystallization of paracetamol. Front. Chem. Sci. Eng. 2013, 7(1), 79-87.
Mohammed, M.; Syed, M. F.; Bhatt, M. J.; Hoffman, E. J.; Aslan, K. Rapid and selective crystallization of acetaminophen using metal-assisted and microwave-accelerated evaporative crystallization. Nano Biomed. Eng. 2012, 4(1), 35.
Kollamaram, G.; Hopkins, S. C.; Glowacki, B. A.; Croker, D. M.; Walker, G. M. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity. Eur. J. Pharm. Sci. 2018, 115, 248-257.
Niinomi, H.; Sugiyama, T.; Uda, S.; Tagawa, M.; Ujihara, T.; Miyamoto, K.; Omatsu, T. Plasmonic trapping-induced crystallization of acetaminophen. Cryst. Growth Des. 2019, 19(2), 529-537.
Al-Ani, A. J.; Herdes, C.; Wilson, C. C.; Castro-Dominguez, B. Engineering a new access route to metastable polymorphs with electrical confinement. Cryst. Growth Des. 2020, 20(3), 1451-1457.
Wang, S.; Wang, S.; Jiang, L.; Wang, M.; Wei, Y.; Sun, J.; Qu, L. Polymorph-controlled crystallization of acetaminophen through femtosecond laser irradiation. Cryst. Growth Des. 2019, 19(6), 3265-3271.
Mei, X.; Wolf, C. Formation of new polymorphs of acridine using dicarboxylic acids as crystallization templates in solution. Cryst. Growth Des. 2004, 4(6), 1099-1103.
Yamashita, H.; Sun, C. C. Self-templating accelerates precipitation of carbamazepine dihydrate during the dissolution of a soluble carbamazepine cocrystal. CrystEngComm 2017, 19(8), 1156-1159.
Vishweshwar, P.; McMahon, J. A.; Oliveira, M.; Peterson, M. L.; Zaworotko, M. J. The predictably elusive form II of aspirin. J. Am. Chem. Soc. 2005, 127(48), 16802-16803.
Elbagerma, M. A.; Edwards, H. G. M.; Munshi, T. Scowen, I. J. Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance. CrystEngComm 2011, 13(6), 1877-1884.
Salari, A.; Young, R. E. Application of attenuated total reflectance FTIR spectroscopy to the analysis of mixtures of pharmaceutical polymorphs. Int. J. Pharm. 1998, 163(1-2), 157-166.
Phenomenex. Organic Acids on Kinetex 2.6u Polar C18 150x4.6mm. https://www.phenomenex.com/Application/Detail/24268?returnURL=/Application/Search&fsr=1 (accessed Jul 20, 2021).
Karki, S.; Friščić, T.; Fabian, L.; Laity, P. R.; Day, G. M.; Jones, W. Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol. Adv. Meter. 2009, 21(38‐39), 3905-3909.
Childs, S. L.; Stahly, G. P.; Park, A. The salt− cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm. 2007, 4(3), 323-338.
Latif. S; Abbas, N.; Hussain, A.; Arshad, M. S.; Bukhari, N. I.; Afzal, H.; Riffat, S.; Ahmad, Z. Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance. Drug Dev. Ind. Pharm. 2018, 44(7), 1099-1108.
Suzuki, N.; Kawahata, M.; Yamaguchi, K.; Suzuki, T.; Tomono, K.; Fukami, T. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids. Drug Dev. Ind. Pharm. 2018, 44(4), 582-589.
Qu, H.; Louhi-Kultanen, M.; Kallas, J. Additive effects on the solvent-mediated anhydrate/hydrate phase transformation in a mixed solvent. Cryst. Growth Des. 7(4), 724-729.
Trask, A. V.; Motherwell, W. S.; Jones, W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 2005, 5(3), 1013-1021.
Vogt, F. G.; Brum, J.; Katrincic, L. M.; Flach, A.; Socha, J. M.; Goodman, R. M.; Haltiwanger, R. C. Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: Understanding the role of water. Cryst. Growth Des. 2006, 6(10), 2333-2354.
Braun, D. E.; Griesser, U. J. Stoichiometric and nonstoichiometric hydrates of brucine. Cryst. Growth Des. 2016, 16(10), 6111-6121.
Tian, F.; Qu, H.; Zimmermann, A.; Munk, T.; Jørgensen, A. C.; Rantanen, J. Factors affecting crystallization of hydrates. J. Pharm. Pharmacol. 2010, 62(11), 1534-1546.
Aitipamula, S.; Vangala, V. R.; Chow, P. S.; Tan, R. B. Cocrystal hydrate of an antifungal drug, griseofulvin, with promising physicochemical properties. Cryst. Growth Des. 2012, 12(12), 5858-5863.
Lee, H. L.; Vasoya, J. M.; Cirqueira, M. D. L.; Yeh, K. L.; Lee, T.; Serajuddin, A. T. Continuous preparation of 1: 1 haloperidol–maleic acid salt by a novel solvent-free method using a twin screw melt extruder. Mol. Pharm. 2017, 14(4), 1278-1291.
Al-Zoubi, N.; Koundourellis, J. E.; Malamataris, S. FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes. J. Pharm. Biomed. Anal. 2002, 29(3), 459-467.
Dang, L.; Du, W.; Black, S.; Wei, H. Solubility of fumaric acid in propan-2-ol, ethanol, acetone, propan-1-ol, and water. J. Chem. Eng. Data 2009, 54(11), 3112-3113.
Surena, S.; Sunsandeea, N.; Stolcova, M.; Hronecm M.; Leepipatpiboonc, N.; Pancharoena, U.; Kheawhoma, S. Measurement on the solubility of adipic acid in various solvents at high temperature and its thermodynamics parameters. Fluid Phase Equilib. 2013, 360, 332-337.
Yalkowsky, S.H.; He, Yan. Handbook of aqueous solubility data. 2nd edition, CRC Press LLC, Boca Raton, FL, 2003; pp 96-97.
Nehm, S. J.; Rodríguez-Spong, B.; Rodríguez-Hornedo, N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 2006, 6(2), 592-600.
Jayasankar, A.; Reddy, L. S.; Bethune, S. J.; Rodríguez-Hornedo, N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst. Growth Des. 2009, 9(2), 889-897.
Seton, L.; Khamar, D.; Bradshaw, I. J., Hutcheon, G. A. Solid state forms of theophylline: Presenting a new anhydrous polymorph. Cryst. Growth Des. 2010, 10(9), 3879-3886.
Morrison, J. D.; Robertson, J. M. 210. The crystal and molecular structure of certain dicarboxylic acids. Part V. Adipic acid. J. Chem. Soc. 1949, 987-992.
C. J. Brown, The crystal structure of fumaric acid. Acta. Cryst. 1966, 21(1), 1-5.
Fucke, K,; McIntyre, G. J.; Wilkinson, C. Henry, M. Howard, J. A.; Steed, J. W. New insights into an old molecule: interaction energies of theophylline crystal forms. Cryst. Growth Des. 2012, 12(3), 1395-1401.
Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol–oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC advances 2016, 6(12), 10024-10037.
Boukerche, M.; Mangin, D.; Klein, J. P.; Monnier, O.; Hoff, C. Inducing the stable polymorph using heterogeneous primary nucleation. Chem. Eng. Res. Des. 2010, 88(11), 1474-1478.
Chen, S.; Xi, H.; Yu, L. Cross-nucleation between ROY polymorphs. J. Am. Chem. 2005, 127(49), 17439-1744.
Tao, J.; Jones, K. J.; Yu, L. Cross-nucleation between D-mannitol polymorphs in seeded crystallization. Cryst. Growth Des. 2007, 7(12), 2410-2414.
Lee, T.; Lin, Y. K. The origin of life and the crystallization of aspartic acid in water. Cryst. Growth Des. 2010, 10(4), 1652-1660.
Leyssens, T.; Springuel, G.; Montis, R.; Candoni, N.; Veesler, S. Importance of solvent selection for stoichiometrically diverse cocrystal systems: Caffeine/maleic acid 1: 1 and 2: 1 cocrystals. Cryst. Growth Des. 2012, 12(3), 1520-1530.
Li, Z.-H. ; Yu, T.; Lee, T.; Kim, W.-S. Cocrystallization of caffeine–maleic acid in a batchelor vortex flow. Cryst. Growth Des. 2020, 20(3), 1618-1627.
Serajuddin, A. T. M. Salt formation to improve drug solubility. Adv. Drug Delivery Rev. 2007, 59(7), 603-616.
Alhalaweh, A.; Sokolowski, A.; Rodriguez-Hornedo, N.; Velaga, S. P. Solubility behavior and solution chemistry of indomethacin cocrystals in organic solvents. Cryst. Growth Des.2011, 11(9), 3923-3929.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Tech. 2006, 30(10), 72-92.
Shahid, M.; Sanxaridou, G.; Ottoboni,S.; Lue, L.; Price, C. Exploring the role of anti-solvent effects during washing on active pharmaceutical ingredient purity. Org. Proc. Res. Dev. 2021, 25(4), 969-981.
Shaw, L. R.; Irwin, W. J.; Gratten, T. J.; Conway, B. R. The effect of selected water-soluble excipients on the dissolution of paracetamol and ibuprofen. Drug Dev. Ind. Pharm. 2005, 31(6), 515-525.
Yang, X.; Acevedo, D.; Mohammad, A.; Pavurala, N.; Wu, H.; Brayton, A. L.; Shaw, R. A.; Goldman, M. J.; He, F.; Li, S.; Fisher, R. J.; O’Connor, F. F. Cruz, C. N. Risk considerations on developing a continuous crystallization system for carbamazepine. Org. Proc. Res. Dev. 2017, 21(7), 1021-1033.
Heywood, N. I. Stop your slurries from stirring up trouble. Chem. Eng. Prog. 1999, 95, 21-42.
Parzonka, W.; Kenchington, J. M.; Charles, M. E. Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Can. J. Chem. Eng. 1981, 59(3), 291-296.
Gao, Z.; Chen, W.; Chen, X.; Wang, D.; Yi, S. Study on the isomerization of maleic acid to fumaric acid without catalyst. Bull. Korean Chem. Soc. 2018, 39(8), 920-924.
Chen, W.; Chen, X.; Yi, S. Kinetic study on the preparation of fumaric acid from maleic acid by batch noncatalytic isomerization. ACS omega 2019, 4(5), 8274-8281.
C. Wales, Multi-component crystallisation approaches to controlling crystalline forms of active pharmaceutical ingredients. PhD Dissertation, University of Glasgow, Glasgow, Scotland, 2013.
Lee, T; Wang, P. Y. Screening, manufacturing, photoluminescence, and molecular recognition of co-crystals: Cytosine with dicarboxylic acids. Cryst. Growth Des. 2010, 10(3), 1419-1434.
Sander, J. R.; Bučar, D. K.; Henry, R. F.; Baltrusaitis, J.; Zhang, G. G.; MacGillivray, L. R. A red zwitterionic co-crystal of acetaminophen and 2, 4-pyridinedicarboxylic acid. J. Pharm. Sci. 2010, 99(9), 3676-3683.
Hou, X.; Feng, Y.; Zhang, P.; Wei, H.; Dang, L. Selective crystal growth of theophylline-saccharin cocrystal on self-assembled monolayer from incongruent system. Cryst Growth Des. 2015, 15(10), 4918-4924.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. A rapid thermal method for cocrystal screening. CrystEngComm 2008, 10(6), 665-668. |