博碩士論文 105384001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.176.149
姓名 葉冠麟(Kuan Lin Yeh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Batch and Continuous Crystallization of Form II Paracetamol through the Assistance of Additives)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ The Effect of Upstream Performance of Biocatalytic Reaction on Downstream Purification Feasibility in Glycine Production Using Immobilized Aminoacylase★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選
★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當一種化合物的分子能夠以不同的排列方式組成結晶時,我們稱其為多型晶體。不同的多型晶體通常具有不同的物化性質,且在專利佈局上能延長藥品的生命週期,因此一直是製藥工程重要的課題之一。乙醯胺酚是一種常見的止痛藥,相較於市售的乙醯胺酚Form I結晶, Form II結晶的溶解度與可壓縮性更高,更有利於釋放與打錠,但Form II結晶的穩定度較差,很難穩定的製備。在本研究中我們開發了利用添加物控制多型晶體的結晶製程來製備乙醯胺酚Form II結晶,Form II結晶可以在分別添加五種添加劑,己二酸、富馬酸、蘋果酸、草酸或琥珀酸的情況下,透過乙醯胺酚的冷卻結晶製程來製備。我們探討了添加劑的用量、加入晶種和過飽和度S對乙醯胺酚形成多型晶體的影響,並發現:(1)添加入的添加劑越多,形成乙醯胺酚Form II晶體的可能性越高,(2)以富馬酸為晶種加入過飽和的乙醯胺酚水溶液可以誘導Form II晶體的成核,其他四種添加物則無此特性,(3)乙醯胺酚-草酸在水中的溶解度相圖顯示出乙醯胺酚-草酸可能會以複合物的形式存在於水溶液中,而這有可能是草酸造成乙醯胺酚選擇性地形成Form II晶體的原因之一,以及(4)在沒有添加劑的情況下,在S = 3.3到S = 3.6的範圍內進行冷卻再結晶可使Form II乙醯胺酚單獨成核,但在加入乙醯胺酚重量的百分之五十的富馬酸後,S的範圍可以拓展到 S = 1.5 到 5.7。通過配置濃度為58.82毫克乙醯胺酚、29.4毫克富馬酸/毫升的水溶液,並從攝氏75度以每分鐘一度的冷卻速率從 75度下降到10度,可以獲得約 1.47 克的乙醯胺酚Form II晶體(即產率 = 73.55%)。
我們也使用附有攪拌設備的結晶槽與管狀結晶槽進行乙醯胺酚的批示及連續式結晶,在批式結晶實驗中,乙醯胺酚Form II可以在有富馬酸的環境中結晶,但在經過長時間攪拌後乙醯胺酚Form II晶體都會轉變為較穩定的Form I。另一方面,乙醯胺酚Form II晶體可在特定的濃度以及流量下,藉由連續式結晶製程獲得,提高乙醯胺酚-富馬酸水溶液的流速與富馬酸的比例可以更穩定的獲得Form II的乙醯胺酚,適度降低乙醯胺酚的初始濃度也有助於緩解結晶沉澱於結晶管內的問題,並進而提升產率。
此外,我們也發現了乙醯胺酚溶液在加入馬來酸後由無色轉變為黃色,而顏色的改變與乙醯胺酚-馬來酸的共晶有關,本研究也同時報導了乙醯胺酚-馬來酸共晶的紅外光譜、光致發光光譜、溶解度相圖和三角相圖。
摘要(英) Polymorphism is one of the important topics in pharmaceutical industry due to its ability in modulating the physicochemical properties and extending the life cycle of a drug substance. Form II paracetamol (PCA) is a popular drug substance attracting the interest of researchers due to its improvement for compressibility of PCA. However, its low stability has made it difficult to be produced in a large scale with a good reproducibility. In the present study, multicomponent crystallization was developed to prepare the metastable Form II PCA. Form II PCA crystals could be yielded by cooling crystallization in the presence of five additives: adipic acid (ADI), fumaric acid (FUM), DL-malic acid (MLC), oxalic acid (OXA) and succinic acid (SUC). The effects of the amounts of additives, seeding, and the degree of supersaturation, S, of PCA, on the polymorphic formation of PCA were thoroughly investigated. It was found that: (1) the more additives were added, the higher probability of forming Form II PCA crystals, (2) Form II PCA crystals could be induced by seeding the PCA aqueous solution with FUM, while the other four additives had failed to do so, (3) a new solution complex of PCA-OXA, evidenced by a concave upward curve in the solubility diagram, might be responsible for the selective nucleation of Form II PCA in the PCA-OXA aqueous solution, and (4) the range of S for nucleating Form II PCA was modulated from S = 3.3 to 3.6 in the absence of additive, and extended to 1.5 to 5.7 in the presence of 50 wt% of FUM. About 1.47 g of Form II PCA crystals (i.e. yield = 73.55 %) could be obtained by cooling crystallization from 75o to 10oC with 50 wt% of FUM with a concentration of 58.82 mg/mL and a cooling rate of 1oC/min.
Multicomponent crystallization was applied in a stirred tank for batch crystallization, and in a tubular crystallizer for continuous crystallization. In the experiments of batch crystallization, Form II PCA crystals could be nucleated by cooling crystallization with the assistance of FUM, and then the Form II PCA crystals were transformed to stable Form I PCA crystals after a long time upon agitation. On the other hand, the Form II PCA crystals were isolated by continuous crystallization with a concentration of 44 mg of PCA/mL of water with 50wt% of FUM and a flow rate of 150 mL/min.
In addition, the color of PCA aqueous solution had changed to yellow upon the addition of MAL, but the yellow color was not seen for the aqueous solution of each individual component. The IR spectrum, photoluminescence spectrum, solubility diagram, and phase diagram of PCA-MAL co-crystals were established.
關鍵字(中) ★ 結晶工程
★ 多型晶體
★ 乙醯胺酚
★ 共晶
★ 連續式製程
關鍵字(英) ★ crystallization engineering
★ polymorphism
★ paracetamol
★ co-crystal
★ continuous process
論文目次 Table of Contents
摘要 i
Abstract iii
誌謝 v
Table of Contents vii
List of Tables xii
List of Figures xiv
List of Schemes xxv
Chapter 1 Introduction 1
1.1 Pharmaceutical Industry 1
1.2 Crystallization Process 5
1.2.1 Fundamentals of Crystallization 5
1.2.2 Batch and Continuous Crystallization 11
1.3 Solid Dosage Forms of API 13
1.3.1 Polymorphism 14
1.3.2 Co-crystal 16
1.4 Paracetamol and Its Polymorphs 18
1.4.1 Brief Introduction of Paracetamol 18
1.4.2 Polymorphs of PCA 19
1.5 Preparation of Metastable Form of PCA 21
1.5.1 Evaporation and Cooling Crystallization without Seeding or Additive 23
1.5.2 Evaporation and Cooling Crystallization with Seeding 25
1.5.3 Contact Line Crystallization 26
1.5.4 Ultrasound-Assisted Crystallization 27
1.5.5 Heterogeneous Crystallization 28
1.5.6 Reaction Coupling 31
1.5.7 Multicomponent Crystallization 32
1.5.8 Summary 35
1.6 Polymorph Assembly by the Presence of Co-former 36
Chapter 2 Experimental Procedures 42
2.1 Chemicals and Solvents 42
2.2 Experimental Procedures 43
2.2.1 Additive Screening for PCA Polymorphs 43
2.2.2 Effects of the Additive Amounts on the Polymorphic Formation of PCA 44
2.2.3 Effects of Using ADI, FUM, MLC, SUC and OXADH as Seeds on the Polymorphic Formation of PCA 46
2.2.4 Solubility Measurements of Form I PCA in Aqueous Solutions of OXA and FUM 47
2.2.5 Effects of Degrees of Supersaturation on the Cooling Recrystallization of PCA with OXA and FUM 48
2.2.6 Preparation of PCA Crystals by Cooling Recrystallization in the Aqueous Solutions at pH 1 and 2 48
2.2.7 Removal of FUM from the Produced Form II PCA-FUM Mixed Crystals 49
2.2.8 Cooling Recrystallization of PCA in the Presence of Additives in a 500 mL-sized Stirred Tank 50
2.2.9 Cooling Recrystallization of PCA in the Presence of FUM in a Tubular Crystallizer 52
2.2.10 Preparation of PCA-MAL Co-crystals by Cooling Recrystallization 55
2.2.11 Establishment of the Ternary Phase Diagram of PCA-MAL-Water 55
2.3 Analytical Methods and Instruments 56
2.3.1 Optical Microscopy (OM) 56
2.3.2 Fourier Transform Infrared Microscopy (FTIR) 57
2.3.3 Powder X-ray Diffraction (PXRD) 57
2.3.4 Thermogravimetric Analysis (TGA) 58
2.3.5 Differential Scanning Calorimetry (DSC) 58
2.3.6 Low-Temperature Differential Scanning Calorimetry (LT-DSC) 59
2.3.7 Nuclear Magnetic Resonance Spectroscopy (NMR) 59
2.3.8 High Performance Liquid Chromatography (HPLC) 60
2.3.9 Photoluminescence Spectroscopy (PL) 61
Chapter 3 Selective Polymorphic Formation of PCA by Additive Addition 62
3.1 Additive Screening for PCA Polymorphs 62
3.2 Effects of the Additive Amounts on the Polymorphic Crystallization of PCA 79
3.3 Effects of Using ADI, FUM, MLC, SUC and OXADH crystals as Seeds to Induce Form II PCA 88
3.4 Freezing Point Measurement of the PCA-Additive Aqueous Solutions 93
3.5 Solubility Diagrams of the PCA-FUM and PCA-OXA Aqueous Solutions 95
3.6 Effects of Degrees of Supersaturation on the Recrystallization of PCA with FUM and OXA 106
3.7 Removal of FUM Crystals from the Mixture of Form II PCA and FUM by Solvent Rinsing 113
Chapter 4 Preparation of Polymorphic PCA in a Batch and a Continuous Crystallizer 118
4.1 Recrystallization of PCA with FUM or OXA in a Stirred Tank 118
4.2 Recrystallization of PCA with FUM or OXA in a Tubular Crystallizer 127
Chapter 5 1:1 Co-crystal of PCA-MAL 136
5.1 Isomerization of MAL 136
5.2 Preparation and Characterization of PCA-MAL Co-crystal 138
Chapter 6 Conclusions and Future Works 147
6.1 Conclusions 147
6.2 Future Works 149
Appendices 151
A. Abbreviations and Notations 151
B. Thermal Scanning for PCA and Co-former 153
C. Form Space Establishment 154
D. Crystallographic Data 157
E. Solubility Data 158
References 161
參考文獻 Mikulic, M. Revenue of the worldwide pharmaceutical market from. (May 4, 2014), 2001 to 2020. https://www.statista.com/statistics/263102/pharmaceutical-market-worldwide-revenue-since-2001/ (accessed Dec 12, 2021)
Semiconductor Industry Association, Global Semiconductor Sales Increase 6.5% to $439 billion in 2020. (Feb 1, 2021), https://www.semiconductors.org/global-semiconductor-sales-increase-6-5-to-439-billion-in-2020/ (accessed Dec 29,2021)
Alsop, T. Semiconductor industry revenue worldwide from 2012 to 2020. (Nov 23, 2021). https://www.statista.com/statistics/272872/global-semiconductor-industry-revenue-forecast/ (accessed Dec 29, 2021)
https://www.efpia.eu/media/602709/the-pharmaceutical-industry-in-figures-2021.pdf (accessed Dec 29, 2021)
Nicola, G.; Hector, H. G.; Alexander, T.; Sara, A.; Mafini, D.; Aliki, G.; Francesco, P. (Jan 1, 2021). https://iri.jrc.ec.europa.eu/scoreboard/2020-eu-industrial-rd-investment-scoreboard (accessed Dec 29, 2021)
Definition of active pharmaceutical ingredient, (2011), World Health Organization.
Wouters, O. J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. Jama 2020, 323(9), 844-853.
DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016, 47, 20-33.
Taylor, D. The pharmaceutical industry and the future of drug development. 2015, 1-33.
Ng, R. Drug: From Discovery to Approval; 3rd Ed.; John Wiley & Sons, Inc., 2015; pp. 1-22.
Lee, H. L. Novel crystallization processes for preparing various crystal forms of active pharmaceutical ingredients. PhD dissertation, National Central University, Zhongli District, Taoyuan City, R. O. C., 2018.
Chen, C. W. Process Intensification for Pharmaceutical Granules Preparation Using Spherical Agglomeration. PhD dissertation, National Central University, Zhongli District, Taoyuan City, R. O. C., 2020.
Nováková, L.; Douša, M.; Pekárek, T.; Mitašík, L. Pharmaceutical analysis | Overview. In encyclopedia of analytical science, 3rd Ed.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M. Academic Press; Elsevier: 2019; 8, pp. 200-218.
Mullin J. W. Crystallization, 4th edition; Butterworth-Heinemann: London, 2001.
Mason, B. J. The supercooling and nucleation of water. Adv. Phys. 1958, 7(26), 221-234.
Lee, T.; Yeh, K. L.; You, J. X; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible crystallization of sodium dodecyl sulfate·1/8 hydrate by evaporation, antisolvent addition, and cooling. ACS Omega 2020, 5(2), 1068-1079
Tung, H. H.; Paul, E. L.; Midler, M.; McCauley, J. A. Crystallization of organic compounds: An Industrial perspective, John Wiley & Sons, Inc. New Jersey, 2008.
Erdemir, D.; Lee, A. Y.; Myerson, A. S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42(5), 621-629.
Korovessi, E.; Linninger, A. A. Batch process, Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2006; pp 7-39.
Chen, J.; Sarma, B.; Evans, J. M.; Myerson, A. S. Pharmaceutical crystallization. Cryst. Growth Des. 2011, 11(4), 887-895.
Jiang, M.; Zhu, Z.; Jimenez, E.; Papageorgiou, C. D.; Waetzig, J.; Hardy, A. Langston, M.; Braatz, R. D. Continuous-flow tubular crystallization in slugs spontaneously induced by hydrodynamics. Cryst. Growth Des. 2014, 14(2), 851-860.
Zhang, H.; Quon, J.; Alvarez, A. J.; Evans, J.; Myerson, A. S.; Trout, B. Development of continuous anti-solvent/cooling crystallization process using cascaded mixed suspension, mixed product removal crystallizers. Org. Proc. Res. Dev. 16(5), 915-924.
Zhang, D.; Xu, S.; Du, S.; Wang, J.; Gong, J. Progress of pharmaceutical continuous crystallization. Engineering 2017, 3(3), 354-364.
Lai, T. T. C.; Ferguson, S.; Palmer, L.; Trout, B. L.; Myerson, A. S. Continuous crystallization and polymorph dynamics in the L-glutamic acid system. Org. Proc. Res. Dev. 2014, 18(11), 1382-1390.
Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015, 20(10), 18759-18776.
Duggirala, N. K.; Perry, M. L.; Almarsson, Ö.; Zaworotko, M. J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. 2016, 52(4), 640-655.
Almarsson, Ö.; Vadas, E. B. Molecules, Materials, Medicines (M3): Linking molecules to medicines through pharmaceutical material science. Cryst. Growth Des. 2015, 15(12), 5645-5647.
Brittain, H. G. Polymorphism and solvatomorphism 2010. J. Pharm. Sci. 2012, 101(2), 464-484.
Gu, C. H.; Young Jr, V.; Grant, D. J. Polymorph screening: Influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90(11), 1878-1890.
Yang, X.; Wang, X.; Ching, C. B. Solubility of Form α and Form γ of Glycine in Aqueous Solutions. J. Chem. Eng. Data 2008, 53(5), 1133-1137.
Ferrari, E. S.; Davey, R. J.; Cross, W. I.; Gillon, A. L.; Towler, C. S. Crystallization in polymorphic systems: The solution-mediated transformation of β to α glycine. Cryst. Growth Des. 2003, 3(1), 53-60.
Munroe, A.; Rasmuson, Å. C.; Hodnett, B. K.; Croker, D. M. Relative stabilities of the five polymorphs of sulfathiazole. Cryst. Growth Des. 2012, 12(6), 2825-2835.
Lee, H. L.; Cheng, Y. S.; Yeh, K. L.; Lee, T. A novel hydrate form of sodium dodecyl sulfate and its crystallization process. ACS Omega, 2021, 6(24),15770-15781.
Nogueira, B. A.; Castiglioni, C.; Fausto, R. Color polymorphism in organic crystals. Commun. Chem. 3(1), 1-12.
Gutiérrez, T. J. State‐of‐the‐art chocolate manufacture: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16(6), 1313-1344.
Wille, R. L.; Lutton, E. S. Polymorphism of cocoa butter. J. Am. Oil Chem. Soc. 1966, 43(8), 491-496.
Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Babić, J. The chemistry behind chocolate production. Molecules 2019, 24(17), 3163.
Gupta, H.; Kumar, S.; Roy, S. K.; Gaud, R. S. Patent protection strategies. J. Pharm. BioAllied Sci. 2010, 2(1), 2.
Lee, E. H. A practical guide to pharmaceutical polymorph screening & selection. Asian J. Pharm. Sci. 2014, 9(4), 163-175.
Ostwald, W. Studien über die bildung und umwandlung fester körper. Z Phys Chem. 1897, 22(1), 289-330.
Yang, J.; Zhu, X. Hu, C. T.; Qiu, M.; Zhu, Q.; Ward, M. D.; Kahr, B. Inverse correlation between lethality and thermodynamic stability of contact insecticide polymorphs. Cryst. Growth Des. 2019, 19(3), 1839-1844.
P. H. Karpinski, Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol., 2006, 29(2), 233-237.
Miller, J. M.; Collman, B. M.; Greene, L. R.; Grant, D. J.; Blackburn, A. C. Identifying the stable polymorph early in the drug discovery–development process. Pharm. Dev. Tech. 2005, 10(2), 291-297.
Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan, B.A.; Soldani, M.; Riley, D.; McFarland, K. Dealing with the impact of ritonavir polymorphs on the late stages of bulk drug process development. Org. Proc. Res. Dev. 2000, 4(5), 413-417.
Bučar, D. K.; Lancaster, R. W.; Bernstein, J. Disappearing polymorphs revisited. Angew. Chem. Int. Ed. 2015, 54(24), 6972-6993.
Zhou, Z.; Chan, H. M.; Sung, H. H. Y.; Tong, H. H.; Zheng, Y. Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharm. Res. 2016, 33(4), 1030-1039.
Thakuria, R.; Delori, A.; Jones, W.; Lipert, M. P.; Roy, L.; Rodríguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453(1), 101-125.
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009, 9(6), 2950-2967.
Sarcevica, I.; Orola, L.; Veidis, M. V.; Podjava, A.; Belyakov, S. Crystal and molecular structure and stability of isoniazid cocrystals with selected carboxylic acids. Cryst. Growth Des. 2013, 13(3), 1082-1090.
Lu, J.; Rohani, S. Preparation and characterization of theophylline-nicotinamide cocrystal. Org. Proc. Res. Dev. 2009, 13(6), 1269-1275.
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm. 2011, 419(1-2), 1-11.
Sanphui, P.; Mishra, M. K.; Ramamurty, U.; Desiraju, G. R. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: Voriconazole as a case study. Mol. Pharm. 2015, 12(3), 889-897.
Sanphui, P.; Devi, V. K.; Clara, D.; Malviya, N.; Ganguly, S.; Desiraju, G. R. Cocrystals of hydrochlorothiazide: Solubility and diffusion/permeability enhancements through drug–coformer interactions. Mol. Pharm. 2015, 12(5), 1615-1622.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225, 809-817.
Braga, D; Grepioni, F.; Maini, L.; P. Mazzeo, P.; Rubini, K. Solvent-free preparation of co-crystals of phenazine and acridine with vanillin. Thermochim. Acta 2010, 507-508, 1-8.
Takata, N.; Shiraki, K.; Takano, R.; Hayashi, Y.; Terada, K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst. Growth Des. 2008, 8(8), 3032-3037.
Bag, P. P.; Patni, M.; Reddy, C. M. A Kinetically controlled crystallization process for identifying new co-crystal forms: fast evaporation of solvent from solutions to dryness. CrystEngComm 2011, 13(19), 5650-5652.
Yu, Z. Q.; Chow, P. S.; Tan, R. B. H. Operating regions in cooling cocrystallization of caffeine and glutaric acid in acetonitrile. Cryst. Growth Des. 2010, 10(5), 2382-2387.
Wang, I.-C.; Lee, M.-J.; Sim, S.-J.; Kim, W.-S.; Chun, N.-H. Choi, G. J. Anti-solvent co-crystallization of carbamazepine and saccharin. Int. J. Pharm. 2013, 450, 311-322.
Alhalaweh, A.; Velaga, S. P. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst. Growth Des. 2010, 10(8), 3302-3305.
Lee, H. L.; Lee, T. Direct co-crystal assembly from synthesis to cocrystallization. CrystEngComm 2015, 17(47), 9002-9006.
Challener, C. A. Scientific advances in cocrystals are offset by regulatory uncertainty. Pharm. Technol. 2014, 38, 1-3.
Dhumal, R. S.; Kelly, A. L.; York, P.; Coates, P. D.; Paradkar, A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm. Res. 2010, 27(12), 2725-2733.
am Ende, D. J.; Anderson, S. R.; Salan, J. S. Development and scale-up of cocrystals using resonant acoustic mixing. Org. Process Res. Dev. 2014, 18(2), 331-341.
Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discovery Today 2018, 24(3), 796-804.
Kumar, A., Kumar, S.; Nanda, A. A review about regulatory status and recent patents of pharmaceutical co-crystals. Adv. Pharm. Bull. 2018, 8(3), 355.
Food and Drug Administration (2018) Guidance for Industry – Regulatory Classification of Pharmaceutical Cocrystals. FDA
Reflection paper on the use of cocrystals of active substances in medicinal products. Committee for Medicinal Products for Human Use. European Medicines Agency. 2015.
Lei, Y. L.; Liao, L. S.; Lee, S. T. Selective growth of dual-color-emitting heterogeneous microdumbbells composed of organic charge-transfer complexes. J. Am. Chem. Soc. 2013, 135(10), 3744-3747.
Bethune, S. J.; Schultheiss, N.; Henck, J. O. Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Cryst. Growth Des. 2011, 11(7), 2817-2823.
Harfouche, L. C.; Brandel, C.; Cartigny, Y.; Petit, S., Coquerel, G. Resolution by Preferential Crystallization of Proxyphylline by Using Its Salicylic Acid Monohydrate Co‐Crystal. Chem. Eng. Tech. 2020, 43(6), 1093-1098.
Lee, T.; Chen, H. R.; Lin, H. Y.; Lee, H. L. Continuous co-crystallization as a separation technology: the study of 1:2 co-crystals of phenazine-vanillin. Cryst. Growth Des. 2012, 12(12), 5897-5907.
https://www.fda.gov/drugs/information-drug-class/acetaminophen-information (accessed Dec 13, 2021)
Brune, K.; Renner, B.; Tiegs, G. Acetaminophen/paracetamol: A history of errors, failures and false decisions. Eur. J. Pain, Suppl. 2015, 19(7), 953-965.
https://www.marketwatch.com/press-release/global-paracetamol-market-size-in-2021-growth-by-forthcoming-developments-industry-scope-opportunity-business-strategy-and-covid-19-market-scenario-report-by-industry-research-biz-2021-11-09 (accessed Dec 13, 2021)
Goscianska, J.; Olejnik, A.; Ejsmont, A.; Galarda, A.; Wuttke, S. Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. J. Colloid Interface Sci. 2021, 586, 673-682.
https://www.campaignasia.com/article/taiwans-top-100-brands-japanese-brands-still-the-most-trusted/453984 (accessed Dec 13, 2021)
Sohrabi, C.; Alsafi, Z.; O′neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71-76.
Haїsa, M.; Kashino, S.; Kawai, R.; Maeda, H. The monoclinic form of p-hydroxyacetanilide. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1976, 32(4), 1283-1285.
Panini, P.; Chopra, D. Quantitative insights into energy contributions of intermolecular interactions in fluorine and trifluoromethyl substituted isomeric N-phenylacetamides and N-methylbenzamides. CrystEngComm, 2013, 15(18), 3711-3733.
Haїsa, M.; Kashino, S.; Maeda, H. The orthorhombic form of phydroxyacetanilide. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1974, 30(10), 2510-2512.
Perrin, M.-A.; Neumann, M. A.; Elmaleh, H.; Zaske, L. Crystal structure determination of the elusive paracetamol Form III. Chem. Commun. 2009, (22), 3181-3183.
Smith, S. J.; Bishop, M. M.; Montgomery, J. M.; Hamilton, T. P.; Vohra, Y. K. Polymorphism in paracetamol: Evidence of additional forms IV and V at high pressure. J. Phys. Chem. A 2014, 118(31), 6068-6077.
Reiss, C. A.; van Mechelen, J. B.; Goubitzc, K.; Peschar, R. Reassessment of paracetamol orthorhombic Form III and determination of a novel low temperature monoclinic Form III-m from powder diffraction data. Acta Crystallogr. Sect. C: Struct. Chem. 2018, 74(3), 392-399.
Shtukenberg, A. G.; Tan, M.; Vogt-Maranto, L.; Chan, E. J.; Xu, W.; Yang, J.; Tuckerman, M. E.; Hu, C. T.; Kahr, B. Melt crystallization for paracetamol polymorphism. Cryst. Growth Des. 2019, 19(7), 4070-4080.
Parkin, A.; Parsons, S.; Pulham, C. R. Paracetamol monohydrate at 150 K. Acta Crystallogr. Sect. E. 2002, 58(12), o1345-o1347.
Fabbiani, F. P.; Allan, D. R.; David, W. I.; Moggach, S. A.; Parsons, S.; Pulham, C. R. High-pressure recrystallisation—A route to new polymorphs and solvates. CrystEngComm 2004, 6(82), 505-511.
McGregor, P. A.; Allan, D. R.; Parsons, S.; Pulham, C. R. Preparation and crystal structure of a trihydrate of paracetamol. J. Pharm. Sci. 2002, 91(5), 1308-1311.
Oswald, I. D.; Allan, D. R.; McGregor, P. A.; Motherwell, W. S.; Parsons, S.; Pulham, C. R. The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. Acta Crystallogr. Sect. B 2002, 58(6), 1057-1066.
Oswald, I. D.; Motherwell, W. S.; Parsons, S.; Pulham, C. R. A paracetamol–morpholine adduct. Acta Crystallogr. Sect. E 2002, 58(11), o1290-o1292.
Fabbiani, F. P.; Allan, D. R.; Dawson, A.; David, W. I.; McGregor, P. A.; Oswald, I. D.; Parsons, S. Pulham, C. R. Pressure-induced formation of a solvate of paracetamol. Chem. Comm. 2003, (24), 3004-3005.
Di Martino, P.; Guyot-Hermann, A. M.; Conflant, P.; Drache, M.; Guyot, J. C. A new pure paracetamol for direct compression: the orthorhombic form. Int. J. Pharm. 1996, 128(1-2), 1-8.
Joiris, E.; Di Martino, P.; Berneron, C.; Guyot-Hermann, A. M.; Guyot, J. C. Compression behavior of orthorhombic paracetamol. Pharm. Res. 1998, 15(7), 1122-1130.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Ikeda, K.; Fukukita, S.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H. Inoue, T.; Yoshimura, M.; Mori, Y. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation. Appl. Phys. Express 2015, 8(6), 065501.
Lee, T.; Lin, H. Y.; Lee, H. L. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: The study of acetaminophen (paracetamol) by in-process controls. Org. Process Res. Dev. 2013, 17(9), 1168-1178.
Kachrimanis, K.; Fucke, K.; Noisternig, M.; Siebenhaar, B.; Griesser, U. J. Effects of moisture and residual solvent on the phase stability of orthorhombic paracetamol. Pharm. Res, 2008, 25(6), 1440-1449.
Telford, R.; Seaton, C. C.; Clout, A.; Buanz, A.; Gaisford, S.; Williams, G. R.; Prior, T. J.; Okoye, C. H.; Munshi, T.; Scowen, I. J. Stabilisation of metastable polymorphs: The case of paracetamol form III. Chem. Commun. 2016, 52(81), 12028-12031.
Cruz, P. C.; Rocha, F. A.; Ferreira, A. M. Application of selective crystallization methods to isolate the metastable polymorphs of paracetamol: A review. Org. Proc. Res. Dev. 2019, 23(12), 2592-2607.
Peterson, M. L.; Morissette, S. L.; McNulty, C.; Goldsweig, A.; Shaw, P.; LeQuesne, M.; Monagle, J.; Encina, N.; Marchionna, J.; Johnson, A.; Gonzalez-Zugasti, J.; Lemmo, A. V.; Ellis, S. J.; Cima, M. J.; Almarsson, Ö. Iterative high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III. J. Am. Chem. Soc. 2002, 124(37), 10958-10959.
Di Profio, G.; Tucci, S.; Curcio, E.; Drioli, E. Controlling polymorphism with membrane-based crystallizers: Application to form I and II of paracetamol. Chem. Mater. 2007, 19(10), 2386-2388.
Sudha, C.; Parimaladevi, P.; Srinivasan, K. A novel method for the separation of mono and ortho polymorphs of paracetamol in gel matrix. Mater. Sci. Eng. C 2015, 47, 150-155.
Mikhailenko, M. A. Growth of large single crystals of the orthorhombic paracetamol. J. Cryst. Growth 2004, 265(3-4), 616-618.
Méndez del Río, J. R.; Rousseau, R. W. Batch and tubular-batch crystallization of paracetamol: Crystal size distribution and polymorph formation. Cryst. Growth Des. 2006, 6(6), 1407-1414.
Sudha, C.; Srinivasan, K. Nucleation control and separation of paracetamol polymorphs through swift cooling crystallization process. J. Cryst. Growth 2014, 401, 248-251.
Sudha, C. Srinivasan, K. Supersaturation dependent nucleation control and separation of mono, ortho and unstable polymorphs of paracetamol by swift cooling crystallization technique. CrystEngComm 2013, 15(10), 1914-1921
Nichols, G.; Frampton, C. S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 1998, 87(6), 684-693.
Al-Zoubi, N.; Kachrimanis, K.; Malamataris, S. Effects of harvesting and cooling on crystallization and transformation of orthorhombic paracetamol in ethanolic solution. Eur. J. Pharm. Sci., 2002, 17(1-2), 13-21.
Al-Zoubi, N.; Malamataris, S. Effects of initial concentration and seeding procedure on crystallisation of orthorhombic paracetamol from ethanolic solution. Int. J. Pharm. 2003, 260(1), 123-135.
Al-Zoubi, N., Nikolakakis, I., Malamataris, S. Crystallization conditions and formation of orthorhombic paracetamol from ethanolic solution. J. Pharm. Pharmacol. 2002, 54(3), 325-333.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H.; Inoue, T.; Yoshimura, M.; Mori, Y. Metastable crystal growth of acetaminophen using solution-mediated phase transformation. Appl. Phys. Express 2017, 10(1), 015501.
Nicoud, L.; Licordari, F.; Myerson, A. S. Polymorph control in batch seeded crystallizers. A case study with paracetamol. CrystEngComm 2019, 21(13), 2105-2118.
Capes, J. S.; Cameron, R. E. Contact line crystallization to obtain metastable polymorphs. Cryst. Growth Des. 2007, 7(1), 108-112.
Capes, J. S. Cameron, R. E. Effect of polymer addition on the contact line crystallisation of paracetamol. CrystEngComm 2007, 9(1), 84-90.
Lang, M.; Grzesiak, A. L.; Matzger, A. J. The use of polymer heteronuclei for crystalline polymorph selection. J. Am. Chem. Soc. 2002, 124(50), 14834-14835.
Chadwick, K.; Myerson, A.; Trout, B. Polymorphic control by heterogeneous nucleation-A new method for selecting crystalline substrates. CrystEngComm 2011, 13(22), 6625-6627.
Sudha, C.; Nandhini, R.; Srinivasan, K. Polymer-induced selective nucleation of mono or ortho polymorphs of paracetamol through swift cooling of boiled aqueous solution. Cryst. Growth Des. 2014, 14(2), 705-715.
Thomas, L. H.; Wales, C.; Wilson, C. C. Selective preparation of elusive and alternative single component polymorphic solid forms through multi-component crystallisation routes. Chem. Commun. 2016, 52(46), 7372-7375.
Ehmann, H. M.; Werzer, O. Surface mediated structures: Stabilization of metastable polymorphs on the example of paracetamol. Cryst. Growth Des. 2014, 14(8), 3680-3684.
Bolla, G.; Myerson, A. S. SURMOF induced polymorphism and crystal morphological engineering of acetaminophen polymorphs: Advantage of heterogeneous nucleation. CrystEngComm 2018, 20(15), 2084-2088.
Mori, Y.; Maruyama, M.; Takahashi, Y.; Yoshikawa, H. Y.; Okada, S.; Adachi, H.; Sugiyama, S.; Takano, K.; Murakami, S.; Matsumura, H.; Inoue, T.; Yoshimura, M.; Mori, Y. Crystallization of acetaminophen form II by plastic-ball-assisted ultrasonic irradiation. Appl. Phy. Express 2017, 10(2), 025501.
Kaur Bhangu, S.; Ashokkumar, M.; Lee, J. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst. Growth Des. 2016, 16(4), 1934-1941.
Lee, H. L.; Lin, H. Y.; Lee, T. Large-scale crystallization of a pure metastable polymorph by reaction coupling. Org. Process Res. Dev. 2014, 18(4), 539-545.
Thomas, L. H.; Wales, C.; Zhao, L.; Wilson, C. C. Paracetamol form II: An elusive polymorph through facile multicomponent crystallization routes. Cryst. Growth Des. 2011, 11(5), 1450-1452.
Agnew, L. R.; Cruickshank, D. L.; McGlone, T.; Wilson, C. C. Controlled production of the elusive metastable form II of acetaminophen (paracetamol): A fully scalable templating approach in a cooling environment. Chem. Commun. 2016, 52(46), 7368-7371.
Agnew, L. R.; McGlone, T.; Wheatcroft, H. P.; Robertson, A.; Parsons, A. R.; Wilson, C. C. Continuous crystallization of paracetamol (acetaminophen) form II: Selective access to a metastable solid form. Cryst. Growth Des. 2017, 17(5), 2418-2427.
Nicoud, L.; Licordari, F.; Myerson, A. S. Polymorph Control in MSMPR Crystallizers. A Case Study with Paracetamol. Org. Proc. Res. Dev. 2019, 23(5), 794-806.
Liu, Y.; Gabriele, B.; Davey, R. J.; Cruz-Cabeza, A. J. Concerning elusive crystal forms: The case of paracetamol. J. Am. Chem. Soc. 2020, 142(14), 6682-6689.
Beckmann, W. Seeding the desired polymorph: background, possibilities, limitations, and case studies. Org. Proc. Res. Dev. 2000, 4(5). 372-383.
Lee, T., Chang, S. C. Sublimation point depression of small-molecule semiconductors by sonocrystallization. Cryst. Growth Des. 2009, 9(6), 2674-2684.
Thompson, C.; Davies, M. C.; Roberts, C. J.; Tendler, S. J.; Wilkinson, M. J. The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. Int. J. Pharm. 2004, 280(1-2), 137-150.
Lee, E. H.; Byrn, S. R.; Carvajal, M. T. Additive-induced metastable single crystal of mefenamic acid. Pharm Res. 2006, 23(10), 2375-2380.
Mo, Y.; Dang, L.; Wei, H. L-glutamic acid polymorph control using amino acid additives. Ind. Eng. Chem. Res. 2001, 50(18), 10385-10392.
Simone, E.; Steele, G.; Nagy, Z. K. Tailoring crystal shape and polymorphism using combinations of solvents and a structurally related additive. CrystEngComm 2015, 17(48), 9370-9379.
Kelleher, J. M.; Lawrence, S. E.; Moynihan, H. A. Effect of the steric demand and hydrogen bonding capability of additives on the crystal polymorphism of sulfathiazole. CrystEngComm 2006, 8(4), 327-332.
Kaskiewicz, P. L.; Rosbottom, I.; Hammond, R. B.; Warren, N. J.; Morton, C.; Dowding, P. J.; George, N. Roberts, K. J. Understanding and designing tailor-made additives for controlling nucleation: Case study of p-aminobenzoic acid crystallizing from ethanolic solutions. Cryst. Growth Des.2021, 21(4), 1946-1958.
Gu, C. H.; Chatterjee, K.; Young Jr, V.; Grant, D. J. Stabilization of a metastable polymorph of sulfamerazine by structurally related additives. J. Cryst. Growth 2002, 235(1-4), 471-481
Li, Z., Shi, P.; Yang, Y.; Sun, P.; Wang, Y.; Xu, S.; Gong, J. Tuning crystallization and stability of the metastable polymorph of dl-methionine by a structurally similar additive. CrystEngComm 2019, 21(24), 3731-3739.
Urwin, S. J.; Yerdelen, S.; Houson, I.; ter Horst, J. H. Impact of impurities on crystallization and product quality: A case study with paracetamol. Crystals 2021, 11(11), 1344.
Keshavarz, L.; Steendam, R. R.; Blijlevens, M. A.; Pishnamazi, M.; Frawley, P. J. Influence of impurities on the solubility, nucleation, crystallization, and compressibility of paracetamol. Cryst. Growth Des. 2019, 19(7), 4193-4201.
Heffernan, C.; Ukrainczyk, M.; Zeglinski, J.; Hodnett, B. K.; Rasmuson, Å. C. Influence of structurally related impurities on the crystal nucleation of curcumin. Cryst. Growth Des. 2018, 18(8), 4715-4723.
Hsueh, J. C.; Yeh, K. L.; Lee, H. L.; Lee, T. Strategy for polymorphic control by enzymatic reaction and antisolvent crystallization: Effect of aminoacylase on metastable β-glycine formation. React. Chem. Eng. 2021, 6(12), 2292-2305.
Saleemi, A.; Onyemelukwe, I. I.; Nagy, Z. Effects of a structurally related substance on the crystallization of paracetamol. Front. Chem. Sci. Eng. 2013, 7(1), 79-87.
Mohammed, M.; Syed, M. F.; Bhatt, M. J.; Hoffman, E. J.; Aslan, K. Rapid and selective crystallization of acetaminophen using metal-assisted and microwave-accelerated evaporative crystallization. Nano Biomed. Eng. 2012, 4(1), 35.
Kollamaram, G.; Hopkins, S. C.; Glowacki, B. A.; Croker, D. M.; Walker, G. M. Inkjet printing of paracetamol and indomethacin using electromagnetic technology: Rheological compatibility and polymorphic selectivity. Eur. J. Pharm. Sci. 2018, 115, 248-257.
Niinomi, H.; Sugiyama, T.; Uda, S.; Tagawa, M.; Ujihara, T.; Miyamoto, K.; Omatsu, T. Plasmonic trapping-induced crystallization of acetaminophen. Cryst. Growth Des. 2019, 19(2), 529-537.
Al-Ani, A. J.; Herdes, C.; Wilson, C. C.; Castro-Dominguez, B. Engineering a new access route to metastable polymorphs with electrical confinement. Cryst. Growth Des. 2020, 20(3), 1451-1457.
Wang, S.; Wang, S.; Jiang, L.; Wang, M.; Wei, Y.; Sun, J.; Qu, L. Polymorph-controlled crystallization of acetaminophen through femtosecond laser irradiation. Cryst. Growth Des. 2019, 19(6), 3265-3271.
Mei, X.; Wolf, C. Formation of new polymorphs of acridine using dicarboxylic acids as crystallization templates in solution. Cryst. Growth Des. 2004, 4(6), 1099-1103.
Yamashita, H.; Sun, C. C. Self-templating accelerates precipitation of carbamazepine dihydrate during the dissolution of a soluble carbamazepine cocrystal. CrystEngComm 2017, 19(8), 1156-1159.
Vishweshwar, P.; McMahon, J. A.; Oliveira, M.; Peterson, M. L.; Zaworotko, M. J. The predictably elusive form II of aspirin. J. Am. Chem. Soc. 2005, 127(48), 16802-16803.
Elbagerma, M. A.; Edwards, H. G. M.; Munshi, T. Scowen, I. J. Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance. CrystEngComm 2011, 13(6), 1877-1884.
Salari, A.; Young, R. E. Application of attenuated total reflectance FTIR spectroscopy to the analysis of mixtures of pharmaceutical polymorphs. Int. J. Pharm. 1998, 163(1-2), 157-166.
Phenomenex. Organic Acids on Kinetex 2.6u Polar C18 150x4.6mm. https://www.phenomenex.com/Application/Detail/24268?returnURL=/Application/Search&fsr=1 (accessed Jul 20, 2021).
Karki, S.; Friščić, T.; Fabian, L.; Laity, P. R.; Day, G. M.; Jones, W. Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol. Adv. Meter. 2009, 21(38‐39), 3905-3909.
Childs, S. L.; Stahly, G. P.; Park, A. The salt− cocrystal continuum: The influence of crystal structure on ionization state. Mol. Pharm. 2007, 4(3), 323-338.
Latif. S; Abbas, N.; Hussain, A.; Arshad, M. S.; Bukhari, N. I.; Afzal, H.; Riffat, S.; Ahmad, Z. Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance. Drug Dev. Ind. Pharm. 2018, 44(7), 1099-1108.
Suzuki, N.; Kawahata, M.; Yamaguchi, K.; Suzuki, T.; Tomono, K.; Fukami, T. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids. Drug Dev. Ind. Pharm. 2018, 44(4), 582-589.
Qu, H.; Louhi-Kultanen, M.; Kallas, J. Additive effects on the solvent-mediated anhydrate/hydrate phase transformation in a mixed solvent. Cryst. Growth Des. 7(4), 724-729.
Trask, A. V.; Motherwell, W. S.; Jones, W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 2005, 5(3), 1013-1021.
Vogt, F. G.; Brum, J.; Katrincic, L. M.; Flach, A.; Socha, J. M.; Goodman, R. M.; Haltiwanger, R. C. Physical, crystallographic, and spectroscopic characterization of a crystalline pharmaceutical hydrate: Understanding the role of water. Cryst. Growth Des. 2006, 6(10), 2333-2354.
Braun, D. E.; Griesser, U. J. Stoichiometric and nonstoichiometric hydrates of brucine. Cryst. Growth Des. 2016, 16(10), 6111-6121.
Tian, F.; Qu, H.; Zimmermann, A.; Munk, T.; Jørgensen, A. C.; Rantanen, J. Factors affecting crystallization of hydrates. J. Pharm. Pharmacol. 2010, 62(11), 1534-1546.
Aitipamula, S.; Vangala, V. R.; Chow, P. S.; Tan, R. B. Cocrystal hydrate of an antifungal drug, griseofulvin, with promising physicochemical properties. Cryst. Growth Des. 2012, 12(12), 5858-5863.
Lee, H. L.; Vasoya, J. M.; Cirqueira, M. D. L.; Yeh, K. L.; Lee, T.; Serajuddin, A. T. Continuous preparation of 1: 1 haloperidol–maleic acid salt by a novel solvent-free method using a twin screw melt extruder. Mol. Pharm. 2017, 14(4), 1278-1291.
Al-Zoubi, N.; Koundourellis, J. E.; Malamataris, S. FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes. J. Pharm. Biomed. Anal. 2002, 29(3), 459-467.
Dang, L.; Du, W.; Black, S.; Wei, H. Solubility of fumaric acid in propan-2-ol, ethanol, acetone, propan-1-ol, and water. J. Chem. Eng. Data 2009, 54(11), 3112-3113.
Surena, S.; Sunsandeea, N.; Stolcova, M.; Hronecm M.; Leepipatpiboonc, N.; Pancharoena, U.; Kheawhoma, S. Measurement on the solubility of adipic acid in various solvents at high temperature and its thermodynamics parameters. Fluid Phase Equilib. 2013, 360, 332-337.
Yalkowsky, S.H.; He, Yan. Handbook of aqueous solubility data. 2nd edition, CRC Press LLC, Boca Raton, FL, 2003; pp 96-97.
Nehm, S. J.; Rodríguez-Spong, B.; Rodríguez-Hornedo, N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 2006, 6(2), 592-600.
Jayasankar, A.; Reddy, L. S.; Bethune, S. J.; Rodríguez-Hornedo, N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst. Growth Des. 2009, 9(2), 889-897.
Seton, L.; Khamar, D.; Bradshaw, I. J., Hutcheon, G. A. Solid state forms of theophylline: Presenting a new anhydrous polymorph. Cryst. Growth Des. 2010, 10(9), 3879-3886.
Morrison, J. D.; Robertson, J. M. 210. The crystal and molecular structure of certain dicarboxylic acids. Part V. Adipic acid. J. Chem. Soc. 1949, 987-992.
C. J. Brown, The crystal structure of fumaric acid. Acta. Cryst. 1966, 21(1), 1-5.
Fucke, K,; McIntyre, G. J.; Wilkinson, C. Henry, M. Howard, J. A.; Steed, J. W. New insights into an old molecule: interaction energies of theophylline crystal forms. Cryst. Growth Des. 2012, 12(3), 1395-1401.
Srivastava, K.; Shimpi, M. R.; Srivastava, A.; Tandon, P.; Sinha, K.; Velaga, S. P. Vibrational analysis and chemical activity of paracetamol–oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach. RSC advances 2016, 6(12), 10024-10037.
Boukerche, M.; Mangin, D.; Klein, J. P.; Monnier, O.; Hoff, C. Inducing the stable polymorph using heterogeneous primary nucleation. Chem. Eng. Res. Des. 2010, 88(11), 1474-1478.
Chen, S.; Xi, H.; Yu, L. Cross-nucleation between ROY polymorphs. J. Am. Chem. 2005, 127(49), 17439-1744.
Tao, J.; Jones, K. J.; Yu, L. Cross-nucleation between D-mannitol polymorphs in seeded crystallization. Cryst. Growth Des. 2007, 7(12), 2410-2414.
Lee, T.; Lin, Y. K. The origin of life and the crystallization of aspartic acid in water. Cryst. Growth Des. 2010, 10(4), 1652-1660.
Leyssens, T.; Springuel, G.; Montis, R.; Candoni, N.; Veesler, S. Importance of solvent selection for stoichiometrically diverse cocrystal systems: Caffeine/maleic acid 1: 1 and 2: 1 cocrystals. Cryst. Growth Des. 2012, 12(3), 1520-1530.
Li, Z.-H. ; Yu, T.; Lee, T.; Kim, W.-S. Cocrystallization of caffeine–maleic acid in a batchelor vortex flow. Cryst. Growth Des. 2020, 20(3), 1618-1627.
Serajuddin, A. T. M. Salt formation to improve drug solubility. Adv. Drug Delivery Rev. 2007, 59(7), 603-616.
Alhalaweh, A.; Sokolowski, A.; Rodriguez-Hornedo, N.; Velaga, S. P. Solubility behavior and solution chemistry of indomethacin cocrystals in organic solvents. Cryst. Growth Des.2011, 11(9), 3923-3929.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Tech. 2006, 30(10), 72-92.
Shahid, M.; Sanxaridou, G.; Ottoboni,S.; Lue, L.; Price, C. Exploring the role of anti-solvent effects during washing on active pharmaceutical ingredient purity. Org. Proc. Res. Dev. 2021, 25(4), 969-981.
Shaw, L. R.; Irwin, W. J.; Gratten, T. J.; Conway, B. R. The effect of selected water-soluble excipients on the dissolution of paracetamol and ibuprofen. Drug Dev. Ind. Pharm. 2005, 31(6), 515-525.
Yang, X.; Acevedo, D.; Mohammad, A.; Pavurala, N.; Wu, H.; Brayton, A. L.; Shaw, R. A.; Goldman, M. J.; He, F.; Li, S.; Fisher, R. J.; O’Connor, F. F. Cruz, C. N. Risk considerations on developing a continuous crystallization system for carbamazepine. Org. Proc. Res. Dev. 2017, 21(7), 1021-1033.
Heywood, N. I. Stop your slurries from stirring up trouble. Chem. Eng. Prog. 1999, 95, 21-42.
Parzonka, W.; Kenchington, J. M.; Charles, M. E. Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Can. J. Chem. Eng. 1981, 59(3), 291-296.
Gao, Z.; Chen, W.; Chen, X.; Wang, D.; Yi, S. Study on the isomerization of maleic acid to fumaric acid without catalyst. Bull. Korean Chem. Soc. 2018, 39(8), 920-924.
Chen, W.; Chen, X.; Yi, S. Kinetic study on the preparation of fumaric acid from maleic acid by batch noncatalytic isomerization. ACS omega 2019, 4(5), 8274-8281.
C. Wales, Multi-component crystallisation approaches to controlling crystalline forms of active pharmaceutical ingredients. PhD Dissertation, University of Glasgow, Glasgow, Scotland, 2013.
Lee, T; Wang, P. Y. Screening, manufacturing, photoluminescence, and molecular recognition of co-crystals: Cytosine with dicarboxylic acids. Cryst. Growth Des. 2010, 10(3), 1419-1434.
Sander, J. R.; Bučar, D. K.; Henry, R. F.; Baltrusaitis, J.; Zhang, G. G.; MacGillivray, L. R. A red zwitterionic co-crystal of acetaminophen and 2, 4-pyridinedicarboxylic acid. J. Pharm. Sci. 2010, 99(9), 3676-3683.
Hou, X.; Feng, Y.; Zhang, P.; Wei, H.; Dang, L. Selective crystal growth of theophylline-saccharin cocrystal on self-assembled monolayer from incongruent system. Cryst Growth Des. 2015, 15(10), 4918-4924.
Lu, E.; Rodríguez-Hornedo, N.; Suryanarayanan, R. A rapid thermal method for cocrystal screening. CrystEngComm 2008, 10(6), 665-668.
指導教授 李度(Tu Lee) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明