博碩士論文 106384601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.117.85.73
姓名 辛迪(Cindy Mutiara Septani)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
(Hierarchically Porous Carbons Templated by Block Copolymer Micelles: from Micellar Assembly to Electrochemical Application)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 具有多層級孔隙率和良好定制形態的多層級孔洞碳材料 (HPCM) 是生物傳感器、電催化和超級電容器中電化學應用的理想選擇。與其他合成策略相比,嵌段共聚物 (BCP) 的自組裝提供了製備 HPCM 的通用平台。然而,具有多層級孔洞尺寸和明確形態的 HPCM 的可調控製備仍然是一個巨大的挑戰。在這項研究中,我們發表了一種簡便的合成方式,通過聚苯乙烯-嵌段-聚(乙烯)PS-b-PEO/多巴胺(DA)在 THF/H2O 共溶劑中的可調控自組裝來製造多層級孔洞碳材料。介孔的形態是通過微調 PS-b-PEO 和多巴胺在強酸性 THF/H2O 共溶劑中的共組裝來定制的。透過在氨氣環境下溶劑退火的方式,使多巴胺進行聚合,進而產生巨觀相分離以生成(percolating)巨孔。隨後熱裂解從混合物中選擇性地去除 PS-b-PEO 產生多層級孔洞碳材料。在本研究中,我們旨在了解 PS-b-PEO/DA 在THF/H2O 共溶劑中的自組裝行為以及影響溶液狀態、乾燥塊材和碳化粉末形態的因素。通過氧還原反應 (ORR) 建立了形態、過程和電化學性能之間的相關性。
摘要(英) Hierarchically porous carbon materials (HPCMs) with multiscale porosity and well-tailor morphology are favorable for many applications such as electrochemical biosensors, electrocatalysis and supercapacitors. In comparison with other synthetic techniques, the self-assembly of block copolymers (BCPs) provides a flexible way to prepare HPCMs. However, controllable preparation of HPCMs composed of hierarchically porous sizes and well-defined morphologies still remains a great challenge. In this study, we report a facile synthetic route to fabricate hierarchically porous carbon materials by controlled self-assembly of polystyrene-block-poly(ethylene) PS-b-PEO/dopamine(DA) in THF/H2O cosolvents. The morphology of mesopores is tailored by finely-tuned the co-assembly of PS-b-PEO and dopamine in a strongly acidic THF/H2O co-solvent. Dopamine polymerization induced by solvent annealing in NH4OH vapor enables solid-liquid macrophase separation to form percolating macropores. Subsequent pyrolysis to selective remove the PS-b-PEO from the mixture produces hierarchically porous carbon materials. In this study, we aim to understand the self-assembly behavior of PS-b-PEO/DA in THF/H2O cosolvents and factors that influenced the morphologies in the solution state, dried bulks, and carbonized powders. A correlation between morphologies, processes, and electrochemical performance through oxygen reduction reaction (ORR) is established.
關鍵字(中) ★ 分級多孔碳
★ 嵌段共聚物
★ 自組裝
★ 小角 X 射線散射 (SAXS)
★ 氧還原反應
關鍵字(英) ★ hierarchically porous carbon
★ block copolymer
★ self-assembly
★ small-angle X-ray scattering (SAXS)
★ oxygen reduction reaction
論文目次 TABLE OF CONTENTS

Cover i
Authorization for Thesis/Dissertation ii
Recommendation Letter iii
Verification Letter from the Oral Examination Committee iv
CHINESE ABSTRACTS v
ENGLISH ABSTRACT vi
TABLE OF CONTENTS i
LIST OF FIGURES iii
LIST OF TABLES vii
CHAPTER I: INTRODUCTION 1
CHAPTER II: LITERATURE REVIEW 5
2.1 Block Copolymers (BCPs) and the Self-Assembly in Solution 5
2.1.1 Copolymer composition and concentration 8
2.1.2 Water content 10
2.1.3 Nature of the common solvents and solvent selectivity 11
2.1.4 The presence of additives 11
2.2 Applications 16
2.3 Dopamine (DA) and Polydopamine (PDA) 17
2.3.1 The mechanism of dopamine (DA) polymerization 18
2.3.2 Factors contribute to the DA polymerization in solution 20
2.4 Fundamentals of oxygen reduction reaction (ORR) in the cathode catalyst of fuel cells 26
2.4.1 Techniques Used in Electrocatalytic Oxygen Reduction Reactions (ORR) 28
CHAPTER III: EXPERIMENTAL METHODS 31
3.1 Materials 31
3.2 Instruments 32
3.3 Sample preparation 33
3.4 Instrumental Analysis 34
3.4.1 Small Angle X-ray Scattering (SAXS) 34
3.4.2 Field Emission Scanning Electron Microscope (FE-SEM) 40
3.4.3 Rotating Disk Electrode (RDE) 41
3.4.4 Surface-Enhanced Raman Spectroscopy 43
3.4.5 X-ray Photoelectron Spectroscopy (XPS) 44
3.4.6 Transmission X-ray Microscopy (TXM) 45
3.4.7 Transmission Electron Microscopy (TEM) 46
3.4.8 N2 adsorption/desorption isotherms (Brunauer-Emmett-Teller, BET) 47
CHAPTER IV: RESULTS AND DISCUSSION 48
4.1 The effects of aging and pH 49
4.1.1 Self-assembly in solution state 49
4.1.2 Self-assembly in dried bulks 61
4.1.3 Solvent annealing (SVA) and Carbonization 66
4.2 The effects of a varied DA content (RDA/PEO) 77
4.2.1 Self-assembly of PS-b-PEO/DA in a strongly acidic solution 77
4.2.2 Structure in dried bulks and SVA-treated bulks 83
4.2.3 Characterization of the carbonized bulks 84
4.2.4 Microelement analyses and electrochemical performances 93
4.2.5 The effect of pyrolysis temperature for ORR performances 101
CHAPTER V: CONCLUSIONS 108
LIST OF PUBLICATIONS 109
REFERENCES 110
參考文獻 REFERENCES

[1] Yang, X. Y.; Chen, L. H.; Li, Y.; Rooke, J. C.; Sanchezc, C.; Su, B. L. Hierarchically Porous Materials: Synthesis Strategies and Structure Design. Chem. Soc. Rev. 2017, 46, 481–558.
[2] Bae, W.; Kim, H. N.; Kim, D.; Park, S.; Jeong, H. E. 25th Anniversary Article : Scalable Multiscale Patterned Structures Inspired by Nature : The Role of Hierarchy. Adv. Mater. 2014, 26, 675–700.
[3] Sun, M. H.; Huang, S. Z.; Chen, L. H.; Li, Y.; Yang, X. Y.; Yuan, Z. Y.; Su, B. L. Applications of Hierarchically Structured Porous Materials from Energy Storage and Conversion, Catalysis, Photocatalysis, Adsorption, Separation, and Sensing to Biomedicine. Chem. Soc. Rev. 2016, 45, 3479–3563.
[4] Yang, Y.; Wang, H.; Yan, F. Y.; Qi, Y.; Lai, Y. K.; Zeng, D. M.; Chen, G.; Zhang, K. Q. Bioinspired Porous Octacalcium Phosphate/Silk Fibroin Composite Coating Materials Prepared by Electrochemical Deposition. ACS Appl. Mater. Interfaces 2017, 7, 5634−5642.
[5] Xu, M.; Li, H.; Zhai, D.; Chang, J.; Chen, S.; Wu, C. Hierarchically Porous Nagelschmidtite Bioceramic–Silk Scaffolds for Bone Tissue Engineering. J. Mater. Chem. B, 2015, 3, 3799–3809.
[6] Tsujimura, S.; Murata, K.; Akatsuka, W. Exceptionally High Glucose Current on a Hierarchically Structured Porous Carbon Electrode with “Wired” Flavin Adenine Dinucleotide Dependent Glucose Dehydrogenase. J. Am. Chem. Soc. 2014, 136, 14432−14437.
[7] Shi, J.; Yang, C.; Zhang, S.; Wang, X.; Jiang, Z.; Zhang, W.; Song, X.; Ai, Q.; Tian, C. Polydopamine Microcapsules with Different Wall Structures Prepared by a Template-Mediated Method for Enzyme Immobilization. ACS Appl. Mater. Interfaces. 2013, 5, 9991−9997.
[8] Meng, L.; Zhang, X.; Tang, Y.; Su, K.; Kong, J. Hierarchically Porous Silicon–Carbon– Nitrogen Hybrid Materials towards Highly Efficient and Selective Adsorption of Organic Dyes. Sci. Rep 2015, 5, 7910–7926.
[9] Chakraborty, S.; Colon, Y. J.; Snurrb, R. Q.; Nguyen, S. T. Hierarchically Porous Organic Polymers: Highly Enhanced Gas Uptake and Transport Through Templated Synthesis. Chem. Sci. 2015, 6, 384–389.
[10] Srinivas, G.; Krungleviciute, V.; Guoa, Z.-X.; Yildirim, T. Exceptional CO2 Capture in a Hierarchically Porous Carbon with Simultaneous High Surface Area and Pore Volume. Energy Environ. Sci., 2014, 7, 335–342.
[11] Wang, S.-X.; Chen, S.; Wei, Q.; Zhang, X.; Wong, S. Y.; Sun, S.; Li, X. Bioinspired Synthesis of Hierarchical Porous Graphitic Carbon Spheres with Outstanding High-Rate Performance in Lithium-Ion Batteries. Chem. Mater. 2015, 27, 336−342.
[12] Pikul, J. H.; Zhang, H. G.; Cho, J.; Braun, P. V.; King, W. P. High-Power Lithium Ion Microbatteries From Interdigitated Three-Dimensional Bicontinuous Nanoporous Electrodes. Nat. Commun. 2013, 4, 1732–1737.
[13] Zhao, Z.; Liu, G.; Li, B.; Guo, L.; Fei, C.; Wang, Y.; Lv, L.; Liu, X.; Tian, J.; Cao, G. Dye-Sensitized Solar Cells Based on Hierarchically Structured Porous TiO2 Filled with Nanoparticles. J. Mater. Chem. A 2015, 3, 11320–11329.
[14] He, W.; Jiang, C.; Wang, J.; Lu, L. High-Rate Oxygen Electroreduction over Graphitic-N Species Exposed on 3D Hierarchically Porous Nitrogen-Doped Carbons. Angew. Chem. 2014, 126, 9657 –9661.
[15] Ma, T.-Y.; Li, H.; Tang, A.-N.; Yuan, Z.-Y. Ordered, Mesoporous Metal Phosphonate Materials with Microporous Crystalline Walls for Selective Separation Techniques. Small 2011, 7, 1827–1837.
[16] Konishi, J.; Fujita, K.; Oiwa, S.; Nakanishi, K.; Hirao, K. Crystalline ZrO2 Monoliths with Well-Defined Macropores and Mesostructured Skeletons Prepared by Combining the Alkoxy-Derived Sol–Gel Process Accompanied by Phase Separation and the Solvothermal Process. Chem. Mater. 2008, 20, 2165–2173.
[17] Guo, T.; Gao, J.; Xu, M.; Ju, Y.; Li, J.; Xue, H.; Guo, T.; Gao, J.; Xu, M.; Ju, Y.; et al. Hierarchically Porous Organic Materials Derived From Copolymers : Preparation and Electrochemical Applications Copolymers : Preparation and Electrochemical Applications. Polym. Rev. 2018, 1–38.
[18] Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. 1998 E . W . R . Steacie Award Lecture Asymmetric Amphiphilic Block Copolymers in Solution : A Morphological Wonderland. Can. J. Chem. 1999, 77, 1311–1326.
[19] Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. D. Self-Assembled Polystyrene- Block -Poly ( Ethylene Oxide ) Micelle Morphologies in Solution. Macromolecules 2006, 39, 4880–4888.
[20] Yu, K.; Eisenberg, A. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS- b -PEO Diblock Copolymers in Solution. Macromolecules 1998, 9297, 3509–3518.
[21] Zhang, L.; Yu, K.; Eisenberg, A. Ion-Induced Morphological Changes in " Crew-Cut " Aggregates of Amphiphilic Block Copolymers. 1996, 272, 1994–1997.
[22] Zhang, L.; Eisenberg, A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-Poly(Acrylic Acid) Block Copolymers in Solutions. Macromolecules 1996, 29, 8805–8815.
[23] Ai, K.; Liu, Y.; Ruan, C.; Lu, L.; Lu, G. M. Sp2 C-Dominant N-Doped Carbon Sub-Micrometer Spheres with a Tunable Size : A Versatile Platform for Highly Effi Cient Oxygen-Reduction Catalysts. Adv. Mater. 2013, 25, 998–1003.
[24] Lin, Z.; Tian, H.; Xu, F.; Yang, X.; Mai, Y.; Feng, X. Facile Synthesis of Bowl-Shaped Nitrogen-Doped Carbon Hollow Particles Templated by Block Copolymer “Kippah Vesicles” for High Performance Supercapacitors. Polym. Chem. 2016, 7, 2092–2098.
[25] Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra- Large Pores through Assembly of Diblock Copolymer Micelles. Angew. Chem 2015, 127, 598–603.
[26] Peng, L.; Hung, C.; Wang, S.; Zhang, X.; Zhu, X.; Zhao, Z.; Wang, C.; Tang, Y.; Li, W.; Zhao, D. Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. J. Am. Chem. Soc. 2019, 141, 7073−7080.
[27] Fei, H.; Long, Y.; Yu, H.; Yavitt, B. M.; Fan, W.; Ribbe, A.; Watkins, J. J. Bimodal Mesoporous Carbon Spheres with Small and Ultra-Large Pores Fabricated Using Amphiphilic Brush Block Copolymer Micelle Templates. ACS Appl. Mater. Interfaces 2020, 12, 57322−57329.
[28] Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials : Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057−5115.
[29] Du, X.; Li, L.; Li, J.; Yang, C.; Frenkel, N.; Welle, A.; Heissler, S.; Nefedov, A.; Grunze, M.; Levkin, P. A. UV-Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning. Adv. Mater 2014, 26, 8029–8033.
[30] Lemaster, J. E.; Jeevarathinam, A. S.; Kumar, A.; Chandrasekar, B.; Chen, F.; Jokerst, J. V. Synthesis of Ultrasmall Synthetic Melanin Nanoparticles by UV Irradiation in Acidic and Neutral Conditions. ACS Appl. Bio Mater 2019, 4667–4674.
[31] Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites. Angew. Chem. Int. Ed 2011, 50, 6799–6802.
[32] Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M. O.; Dai, S.; Yamauchi, Y. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra- Large Pores through Assembly of Diblock Copolymer Micelles. Angew. Chem. 2015, 127, 598–603.
[33] Ischia, M.; Napolitano, A.; Pezzella, A.; Meredith, P.; Sarna, T.; Universitario, C.; Angelo, M. S.; Mckenzie, R. Chemical and Structural Diversity in Eumelanins: Unexplored Bio-Optoelectronic Materials. Angew. Chem. Int. Ed. 2009, 48, 3914–3921.
[34] Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the Structure of Poly(Dopamine). Langmuir 2012, 28, 6428−6435.
[35] Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev., 2012, 41, 5969–5985.
[36] Orilall, M. C.; Wiesner, U. Block Copolymer Based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chem. Soc. Rev. 2011, 40, 520–535.
[37] Matter, S.; Chuenchom, L.; Smarsly, B. M. Recent Progress in Soft-Templating of Porous Carbon Materials. Soft Matter 2012, 8, 10801–10812.
[38] McGann, J. P.; Zhong, M.; Kim, E. K.; Natesakhawat, S.; Jaroniec, M.; Whitacre, J. F.; Matyjaszewski, K.; Kowalewski, T. Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)Chemical Performance. Macromol. Chem. Phys. 2012, 213, 1078–1090.
[39] Zheng, C. Gradient Copolymer Micelles: An Introduction to Structures as Well as Structural Transitions. Soft Matter 2019, 15, 5357–5370.
[40] Desbaumes, L.; Eisenberg, A. Single-Solvent Preparation of Crew-Cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer. Langmuir 1999, 15, 36–38.
[41] Discher, D. E.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323–341.
[42] Battaglia, G.; Ryan, A. J. Effect of Amphiphile Size on the Transformation from a Lyotropic Gel to a Vesicular Dispersion. Macromolecules 2006, 39, 798–805.
[43] Zhang, L.; Eisenberg, A. Formation of Crew-Cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution. Polym. Adv. Technol. 1998, 9, 677–699.
[44] Burke, S. E.; Eisenberg, A. Effect of Sodium Dodecyl Sulfate on the Morphology of Polystyrene- b -Poly ( Acrylic Acid ) Aggregates in Dioxane - Water Mixtures. Langmuir 2001, 17, 8341–8347.
[45] Alexandridis, P. Poly (Ethylene Oxide)/Poly (Propylene Oxide) Block Copolymer Surfactants. Curr. Opin. 1997, 2, 478–489.
[46] Jain, S.; Bates, F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants. Science (80-. ). 2003, 300, 460–464.
[47] Rager, T.; Meyer, W. H.; Wegner, G.; Mathauer, K.; Mächtle, W.; Schrof, W.; Urban, D. Block Copolymer Micelles as Seed in Emulsion Polymerization. Macromol. Chem. Phys. 1999, 200, 1681–1691.
[48] Ku, K. H.; Shin, J. M.; Klinger, D.; Jang, S. G.; Hayward, R. C.; Hawker, C. J.; Kim, B. J. Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano 2016, 10, 5243–5251.
[49] Allen, C.; Maysinger, D.; Eisenberg, A. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Surf. B 1999, 16, 3–27.
[50] Kazunori, K.; Masayuki, Y.; Teruo, O.; Yasuhisa, S. Block Copolymer Micelles as Vehicles for Drug Delivery. J. Control Release 1993, 24, 119–132.
[51] Tripathi, B. P.; Dubey, N. C.; Choudhury, S.; Simon, F.; Stamm, M. Antifouling and Antibiofouling PH Responsive Block Copolymer Based Membranes by Selective Surface Modification. J. Mater. Chem. B. 2013, 1, 3397–3409.
[52] Fehér, B.; Zhu, K.; Nyström, B.; Varga, I.; Pedersen, J. S. Effect of Temperature and Ionic Strength on Micellar Aggregates of Oppositely Charged Thermoresponsive Block Copolymer Polyelectrolytes. Langmuir 2019, 35, 13614-13623.
[53] Keogh, R.; Blackman, L. D.; Foster, J. C.; Varlas, S.; O’Reilly, R. K. The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Rapid. Commun. 2020, 41, 1900599.
[54] Kane, R. S.; Cohen, R. E.; Silbey, R. Synthesis of PbS Nanoclusters within Block Copolymer Nanoreactors. Chem. Mater. 1996, 8, 1919–1924.
[55] Kane, R. S.; Cohen, R. E.; Silbey, R. Synthesis of Doped ZnS Nanoclusters within Block Copolymer Nanoreactors. Chem. Mater. 1999, 11, 90–93.
[56] Mullin, S. A.; Stone, G. M.; Panday, A.; Balsara, N. P. Salt Diffusion Coefficients in Block Copolymer Electrolytes. J. Electrochem. Soc. 2011, 158, 619.
[57] Abetz, V. Isoporous Block Copolymer Membranes. Rapid. Commun. 2015, 36, 10–22.
[58] Li, Y.; Li, C.; Bastakoti, P.; Tang, J.; Jiang, B.; Kim, J.; Shahabuddin, M.; Bando, Y.; Kim, H. Strategic Synthesis of Mesoporous Pt-on-Pd Bimetallic Spheres Templated from A Polymeric Micelle Assembly. J. Mater. Chem. A. 2016, 4, 9169–9176.
[59] Jones, B. H.; Lodge, T. P. Hierarchically Structured Materials from Block Polymer Confinement within Bicontinuous Microemulsion-Derived Nanoporous Polyethylene. ACS Nano 2011, 5, 8914–8927.
[60] Zhong, M.; Jiang, S.; Tang, Y.; Gottlieb, E.; Kim, E. K.; Star, A.; Matyjaszewski, K.; Kowalewski, T. Block Copolymer-Templated Nitrogen-Enriched Nanocarbons with Morphology-Dependent Electrocatalytic Activity for Oxygen Reduction. Chem. Sci. 2014, 5, 3315–3319.
[61] Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Self-Assembly of Block Copolymers towards Mesoporous Materials for Energy Storage and Conversion Systems. Chem. Soc. Rev. 2020, 49, 4681–4736.
[62] Waite, J. H.; Tanzer, M. L. Polyphenolic Substance of Mytilus Edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science (80-. ). 1981, 212, 1038–1041.
[63] Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS Nano 2019, 13, 8537–8565.
[64] Ye, Q.; Zhou, F.; Liu, W. Bioinspired Catecholic Chemistry for Surface Modificatio. Chem. Soc. Rev 2011, 40, 4244–4258.
[65] Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science. 2007, 318, 426–431.
[66] Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22, 4711–4717.
[67] Vecchia, N. F. Della; Luchini, A.; Napolitano, A.; D’Errico, G.; Vitiello, G.; Szekely, N.; D’Ischia, M.; Paduano, L. Tris Buffer Modulates Polydopamine Growth, Aggregation, and Paramagnetic Properties. Langmuir 2014, 30, 9811−9818.
[68] Yue, Q.; Wang, M.; Sun, Z.; Wang, C.; Wang, C.; Deng, Y.; Zhao, D. A Versatile Ethanol-Mediated Polymerization of Dopamine for Efficient Surface Modification and the Construction of Functional Core–Shell Nanostructures. J. Mater. Chem. B, 2013, 1, 6085–6093.
[69] Jiang, X.; Wang, Y.; Li, M. Selecting Water-Alcohol Mixed Solvent for Synthesis of Polydopamine Nano-Spheres Using Solubility Parameter. Sci. Rep. 2014, 4, 1–6.
[70] Ju, K.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules 2011, 12, 625–632.
[71] Zheng, W.; Fan, H.; Wang, L.; Jin, Z. Oxidative Self-Polymerization of Dopamine in an Acidic Environment. Langmuir 2015, 31, 11671−11677.
[72] Bernsmann, F.; Ball, V.; Addiego, F.; Ponche, A.; Michel, M.; Gracio, J. J. de A.; Toniazzo, V.; Ruch, D. Dopamine - Melanin Film Deposition Depends on the Used Oxidant and Buffer Solution. Langmuir 2011, 27, 2819–2825.
[73] Ponzio, F.; Barthès, J.; Bour, J.; Miche, M.; Bertani, P.; Hemmerlé, J.; D’Ischia, M.; Ball, V. Oxidant Control of Polydopamine Surface Chemistry in Acids: A Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings. Chem. Mater. 2016, 28, 4697−4705.
[74] Pham, A. N.; Waite, T. D. Cu(II)-Catalyzed Oxidation of Dopamine in Aqueous Solutions: Mechanism and Kinetics. J. Inorg. Biochem 2014, 137, 74–84.
[75] Sun, Y.; Pham, A. N.; Waite, T. D. Elucidation of the Interplay between Fe(II), Fe(III), and Dopamine with Relevance to Iron Solubilization and Reactive Oxygen Species Generation by Cathecholamines. J. Neurochem 2016, 137, 955–968.
[76] Ball, V.; Frari, D. Del; Toniazzo, V.; Ruch, D. Kinetics of Polydopamine Film Deposition as A Function of PH and Dopamine Concentration : Insights in the Polydopamine Deposition Mechanism. J. Colloid Interface Sci 2012, 386, 366–372.
[77] Mondin, G.; Haft, M.; Wisser, F. M.; Leifert, A.; Hampel, S.; Grothe, J.; Kaskel, S. Investigations of Mussel-Inspired Polydopamine Deposition on WC and Al2O3 Particles : The Influence of Particle Size and Material. Mater. Chem. Phys. 2014, 148, 624–630.
[78] Lee, M.; Lee, S. H.; Oh, I. K.; Lee, H. Microwave-Accelerated Rapid , Chemical Oxidant-Free, Material-Independent Surface Chemistry of Poly(Dopamine). Small 2016, 13, 1–6.
[79] Du, M.; Li, L.; Behboodi-Sadabad, F.; Welle, A.; Li, J.; Heissler, S.; Zhang, H.; Plumeré, N.; Levkin, P. A. Bio-Inspired Strategy for Controlled Dopamine Polymerization in Basic Solutions. Polym. Chem., 2017, 8, 2145–2151.
[80] EG&G Technical Services, Inc. Fuel Cell Handbook. Fuel Cell 2004, 7th Edition (November), 1–352.
[81] Song, C.; Zhang, J. Electrocatalytic Oxygen Reduction Reaction. In PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications; Zhang, J., Ed.; Springer, 2008; pp 89–129.
[82] Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and Applications, 2nd ed.; John Wiley & SONS, Inc.: New Jersey, 2001.
[83] Wang, C. C. Joint Iterative Fast Projection Matching for Fully Automatic Marker-Free Alignment of Nano-Tomography Reconstructions. Sci. Rep. 2020, 10, 7330.
[84] Li, T.; Senesi, A. J.; Lee, B. Small Angle X‑ray Scattering for Nanoparticle Research. Chem. Rev. 2016, 116, 11128–11180.
[85] Hammersley, A. P. FIT2D: An Introduction and Overview, ESRF Internal Report; 1997.
[86] Ilavsky, J. Nika: Software for Two-Dimensional Data Reduction. J. Appl. Crystallogr. 2012, 45, 324−328.
[87] Bressler, I.; Kohlbrecher, J.; Thunemann, A. SASfit: A Tool for Small-Angle Scattering Data Analysis Using A Library of Analytical Expressions. J. Appl. Crystallogr. 2015, 48, 1587−1598.
[88] Ilavsky, J.; Jemian, P. R. Irena: Tool Suite for Modeling and Analysis of Small-Angle Scattering. J. Appl. Crystallogr. 2009, 347−353.
[89] Pedersen, M. C.; Arleth, L.; Mortensen, K. WillItFit: A Framework for Fitting of Constrained Models to Small-Angle Scattering Data. J. Appl. Crystallogr. 2013, 46, 1894−1898.
[90] Forster, S.; Apostol, L.; Bras, W. Scatter: Software for the Analysis of Nano- and Mesoscale Small-Angle Scattering. J. Appl. Crystallogr. 2010, 43, 639−646.
[91] G. Alina, Z. Attala, J. Bakker, W. Bouwman, I. Breßler, P. Butler, K. Campbell, J-H. Cho, T. Cooper-Bennun, R. Cortes Hernandez, M. Doucet, C. Durniak, L. Forster, M. Gonzalez, R. Heenan, A. Jackson, G. Jensen, P. Kienzle, S. King, S. Kline, J. Krzywon, D, and J. Z. SASView for Small Angle Scattering Analysis http://www.sasview.org/.
[92] Senesi, A. J.; Lee, B. Small-Angle Scattering of Particle Assemblies. J. Appl. Crystallogr. 2015, 48, 1172−1182.
[93] Jiang, Z. GIXSGUI: A MATLAB Toolbox for Grazing-Incidence X-Ray Scattering Data Visualization and Reduction, and Indexing of Buried Three-Dimensional Periodic Nanostructured Films. J. Appl. Crystallogr. 2015, 48, 917−926.
[94] Lazzari, R. IsGISAXS: A Program for Grazing-Incidence SmallAngle X-Ray Scattering Analysis of Supported Islands. J. Appl. Crystallogr. 2002, 35, 406−421.
[95] Lee, B. Software https://sites.google.com/site/byeongdu/%0Asoftware.
[96] Babonneau, D. FitGISAXS: Software Package for Modelling and Analysis of GISAXS Data Using IGOR Pro. J. Appl. Crystallogr. 2010, 43, 929−936.
[97] Timmann, A.; Konrad, M.; Schellbach, C.; Meyer, A.; Hamburg, D.-. Scattering Curves of Ordered Mesoscopic Materials. J. Phys. Chem. B 2005, 2005, 109, 1347–1360.
[98] Kotlarchyk, M.; Chen, S. H. Analysis of Small Angle Neutron Scattering Spectra from Polydisperse Interacting Colloids. J. Chem. Phys. 1983, 79, 2481–2469.
[99] Kotlarchyk, M.; Stephens, R. B.; Huang, J. S. Study of Schultz to Model Polydispersity of Microemulsion Droplets. J. Phys. Chem. 1988, 92, 1533–1538.
[100] Kratky, O.; Porod, G. Diffuse Small-Angle Scattering of X-Rays in Colloid System. J. Colloid Sci. 1949, 4, 35–70.
[101] Hayter, J. B.; Penfold., J. Self-Consistent Structural and Dynamic Study of Concentrated Micelle Solutions. J. Chem. Soc., Faraday Trans 1981, 77, 1851–1863.
[102] Nägele, G. On the Dynamics and Structure of Charge-Stabilized Suspensions. Phys. Reports. 1996, 272, 215–372.
[103] Sharma, R. V.; Sharma, K. C. The Structure Factor and The Transport Properties of Dense Fluids Having Molecules with Square Well Potential, A Possible Generalization. Phys. 89A 1977, 213–218.
[104] Beaucage, G. Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering. J. Appl. C~st. (1995). 1995, 28, 717–728.
[105] Hammouda, B. Analysis of the Beaucage Model. J. Appl. Cryst. 2010, 43, 1474–1478.
[106] Leng, Y. MATERIALS CHARACTERIZATION: Introduction to Microscopic and Spectroscopic Methods.; John Wiley & Sons (Asia) Pte Ltd, 2008.
[107] Zhou, X.; Thompson, G. E. Electron and Photon Based Spatially Resolved Techniques, Reference Module in Materials Science and Materials Engineering.; Elsevier Ltd., 2017.
[108] Sing, K. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. Colloids Surf, A Physicochem Eng Asp 2001, 188, 3–9.
[109] Chiou, C. T. Fundamentals of the Adsorption Theory. In Partition and Adsorption of Organic Contaminants in Environmental Systems; John Wiley & Sons, Inc., 2002; pp 39–52.
[110] Hwang, J.; Jo, C.; Hur, K.; Lim, J.; Kim, S.; Lee, J. Direct Access to Hierarchically Porous Inorganic Oxide Materials with ThreeDimensionally Interconnected Networks. J. Am. Chem. Soc. 2014, 136, 16066−16072.
[111] Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V; Valetsky, P. M. Polystyrene- Block -Poly ( Ethylene Oxide ) Micelles in Aqueous Solution. Langmuir 1999, 15, 6195–6200.
[112] Hansen, C. M. In Statistical Thermodynamic Calculation of the Hydrogen Bonding, Dipolar, and Dispersion Solubility Parameters. In Hansen Solubility Parameters; CRC Press Taylor & Francis Group, 2007; pp 45–73.
[113] Chen, T.; Liu, T.; Su, T.; Liang, J. Self-Polymerization of Dopamine in Acidic Environments without Oxygen. Langmuir 2017, 33, 5863−5871.
[114] Wang, Z.; Tang, F.; Fan, H.; Wang, L.; Jin, Z. Polydopamine Generates Hydroxyl Free Radicals under Ultraviolet-Light Illumination. Langmuir 2017, No. 33, 5938−5946.
[115] Wang, X.; Chen, Z.; Yang, P.; Hu, J.; Wang, Z.; Li, Y. Size Control Synthesis of Melanin-like Polydopamine Nanoparticles by Tuning Radicals. Polym. Chem., 2019, 10, 4194–4200.
[116] Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C. Oxidant-Induced Dopamine Polymerization for Multifunctional Coatings. Polym. Chem. 2010, 1, 1430–1433.
[117] Arzillo, M.; Mangiapia, G.; Pezzella, A.; Heenan, R. K.; Radulescu, A.; Paduano, L.; Ischia, M. Eumelanin Buildup on the Nanoscale: Aggregate Growth/Assembly and Visible Absorption Development in Biomimetic 5,6- Dihydroxyindole Polymerization. Biomacromolecules 2012, 13, 2379−2390.
[118] Wang, J.; Ma, G.; Huang, W.; He, Y. Visible-Light Initiated Polymerization of Dopamine in a Neutral Environment for Surface Coating and Visual Protein Detection. Polym. Chem. 2018, 9, 5242–5247.
[119] Umek, N.; Geršak, B.; Vintar, N.; Šoštari, M.; Mavri, J. Dopamine Autoxidation Is Controlled by Acidic PH. Front. Mol. Neurosci. 2018, 11, 1–8.
[120] Kelley, E. G.; Murphy, R. P.; Seppala, J. E.; Smart, T. P.; Hann, S. D.; Sullivan, M. O.; Epps, T. H. Size Evolution of Highly Amphiphilic Macromolecular Solution Assemblies via a Distinct Bimodal Pathway. Nat. Commun. 2014, 5, 3599–3609.
[121] Lokupitiya, H. N.; Stefi, M. Cavitation-Enabled Rapid and Tunable Evolution of High-ΧN Micelles as Templates for Ordered Mesoporous Oxides. Nanoscale 2017, 9, 1393–1397.
[122] Salomaki, M.; Marttila, L.; Kivela, H.; Ouvinen, T.; Lukkari, J. Effects of PH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J. Phys. Chem. B 2018, 122, 6314–6324.
[123] Hong, S.; Wang, Y.; Park, S. Y.; Lee, H. Progressive Fuzzy Cation-π Assembly Assembly of Biological Catecholamines. Sci. Adv. 2018, 4, 1–11.
[124] Fan, H.; Yu, X.; Liu, Y.; Shi, Z.; Liu, H.; Nie, Z.; Wu, D.; Jin, Z. Folic Acid–Polydopamine Nanofibers Show Enhanced Ordered-Stacking via p–p Interactions. Soft Matter 2015, 11, 4621–4629.
[125] Ball, V. Colloids and Surfaces A : Physicochemical and Engineering Aspects Impedance Spectroscopy and Zeta Potential Titration of Dopa-Melanin Films Produced by Oxidation of Dopamine. Colloids Surf. A Physicochem. Eng. Asp. 2010, 363, 92–97.
[126] Geuser, F. De; Bley, F.; Deschamps, A. A New Method for Evaluating the Size of Plate-like Precipitates by Small-Angle Scattering. J. Appl. Cryst. 2012, 45, 1208–1218.
[127] Dan, N.; Safran, S. A. Junctions and End-Caps in Self-Assembled Non-Ionic Cylindrical Micelles. Adv Colloid Interface 2006, 126, 323–331.
[128] Salomaki, M.; Marttila, L.; Kivela, H.; Ouvinen, T.; Lukkari, J. Effects of PH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J. Phys. Chem. B 2018, 122, 6314−6327.
[129] Ball, V.; Gracio, J.; Vila, M.; Singh, M. K.; Metz-Boutigue, M.-H.; Michel, M.; Bour, J.; Toniazzo, V.; Ruch, D.; Buehler, M. J. Comparison of Synthetic Dopamine − Eumelanin Formed in the Presence of Oxygen and Cu 2+ Cations as Oxidants. Langmuir 2013, 29, 12754−12761.
[130] Vecchia, N. F. Della; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; Ischia, M. Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point. Adv. Funct. Mater. 2013, 23, 1331–1340.
[131] Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 95–107.
[132] Zhang, F.; Skoda, M. W. A.; Jacobs, R. M. J.; Martin, R. A.; Martin, C. M.; Schreiber, F. Protein Interactions Studied by SAXS: Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions. J. Phys. Chem. B 2007, 111, 251–259.
[133] Wanakule, N. S.; Virgili, J. M.; Teran, A. A.; Wang, Z.; Balsara, N. P. Thermodynamic Properties of Block Copolymer Electrolytes Containing Imidazolium and Lithium Salts. Macromolecules 2010, 43, 8282–8289.
[134] Young, W.; Epps, T. H. Salt Doping in PEO-Containing Block Copolymers : Counterion and Concentration Effects. Macromolecules 2009, 68, 2672–2678.
[135] Wang, R.-Y.; Park, M. J. Self-Assembly of Block Copolymers with Tailored Functionality: From the Perspective of Intermolecular Interactions. Annu. Rev. Mater. Res. 2020, 50, 12.1–12.29.
[136] Nakamura, I.; Balsara, N. P.; Wang, Z. Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers. Phys. Rev. Lett. 2011, 107, 1–5.
[137] Liebscher, J. Chemistry of Polydopamine – Scope, Variation, and Limitation. Eur. J. Org. Chem. 2019, 4976–4994.
[138] Zhang, P.; Hu, W.; Wu, M.; Gong, L.; Tang, A.; Xiang, L.; Zhu, B.; Zhu, L.; Zeng, H. Cost-Effective Strategy for Surface Modification via Complexation of Disassembled Polydopamine with Fe(III) Ions. Langmuir 2019, 35, 4101−4109.
[139] Roe, R. J. Methods of X-Ray and Neutron Scattering in Polymer Science; Oxford University Press on Demand, 2000.
[140] Lu, Y.; Liou, J.; Lin, C.; Sun, Y. Electrocatalytic Activity of a Nitrogen-Enriched Mesoporous Carbon Framework and Its Hybrids with Pyrolysis of Block Copolymers. RSC Adv. 2015, 5, 105760–105773.
[141] Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli. Surface Area and Pore Texture of Catalysts. Catal. Today. 1998, 41, 207–219.
[142] Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Reinoso, F. R.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.
[143] Murray, K. L.; Seaton, N. A.; Day, M. A. Use of Mercury Intrusion Data, Combined with Nitrogen Adsorption Measurements, as a Probe of Pore Network Connectivity. Langmuir 1999, 15, 8155–8160.
[144] Kenvin, J.; Jagiello, J.; Mitchell, S.; Ramirez, J. P. Unified Method for the Total Pore Volume and Pore Size Distribution of Hierarchical Zeolites from Argon Adsorption and Mercury Intrusion. Langmuir 2015, 31, 1242–1247.
[145] Rouquerol, J.; Baron, G.; Denoyel, R.; Giesche, H.; Groen, J.; Klobes, P.; Levitz, P.; Neimark, A. V.; Rigby, S.; Skudas, R.; et al. Intrusion and Alternative Methods for the Characterization of Macroporous Materials (IUPAC Technical Report). Pure Appl. Chem. 2012, 84, 107–136.
[146] Lv, Q.; Si, W.; He, J.; Sun, L.; Zhang, C.; Wang, N.; Yang, Z.; Li, X.; Wang, X.; Deng, W.; et al. Selectively Nitrogen-Doped Carbon Materials as Superior Metal-Free Catalysts for Oxygen Reduction. Nat. Commun. 2018, 9, 3376–3387.
[147] Bulusheva, L. G.; Okotrub, A. V.; Fedoseeva, Y. V.; Kurenya, A. G.; Asanov, I. P.; Vilkov, O. Y.; Koos, A. A.; Grobert, N. Controlling Pyridinic, Pyrrolic, Graphitic, and Molecular Nitrogen in Multi-Wall Carbon Nanotubes Using Precursors with Different N/C Ratios in Aerosol Assisted Chemical Vapor Deposition. Phys.Chem.Chem.Phys 2015, 17, 23741–23747.
[148] Sun, Y.; Huang, W.; Liou, J.; Lu, Y.; Shih, K.; Lin, C.; Cheng, S. Conversion from Self-Assembled Block Copolymer Nanodomains to Carbon Nanostructures with Well-Defined Morphology. RSC. Adv. 2015, 5, 105774–105784.
[149] Yi, Z.; Zhang, Z.; Wang, S.; Shi, G. Pyridinic Nitrogen-Rich Carbon Nanocapsules from a Bioinspired Polydopamine Derivative for Highly Efficient Electrocatalytic Oxygen Reduction. J. Mater. Chem. A 2017, 5, 519–523.
[150] Guan, B. Y.; Yu, L. Formation of Asymmetric Bowl-Like Mesoporous Particles via Emulsion-Induced Interface Anisotropic Assembly. J. Am. Chem. Soc. 2016, 138, 11306−11311.
[151] Yu, Y. M.; Zhang, J. H.; Xiao, C. H.; Zhong, J. D.; Zhang, X. H.; Chen, J. H. High Active Hollow Nitrogen-Doped Carbon Microspheres for Oxygen Reduction in Alkaline Media. Fuel Cells 2012, 12, 506–510.
[152] Zhang, J.; Chen, G.; Zhang, Q.; Kang, F.; You, B. Self-Assembly Synthesis of N‑Doped Carbon Aerogels for Supercapacitor and Electrocatalytic Oxygen Reduction. ACS Appl. Mater. Interfaces. 2015, 7, 12760−12766.
[153] Guan, B. Y.; Yu, L.; Wen, X.; Lou, D. Chemically Assisted Formation of Monolayer Colloidosomes on Functional Particles. Adv. Mater. 2016, 28, 9596–9601.
[154] Tian, H.; Wang, N.; Xu, F.; Zhang, P.; Hou, D.; Mai, Y.; Feng, X. Nitrogen-Doped Carbon Nanosheets and Nanoflowers with Holey Mesopores for Efficient Oxygen Reduction Catalysis. J. Mater. Chem. A. 2018, 6, 10354–10360.
[155] Hou, D.; Zhang, J.; Tian, H.; Li, Q.; Li, C.; Mai, Y. Pore Engineering of 2D Mesoporous Nitrogen-Doped Carbon on Graphene through Block Copolymer. Adv. Mater. Interfaces 2019, 6, 1901476–1901483.
[156] Xu, Z.; Li, L.; Chen, X.; Xiao, G. N , S-Codoped Mesoporous Carbons Derived from Polymer Micelle- Based Assemblies for the Oxygen Reduction Reaction. ACS Appl. Energy Mater 2021, 4, 1954–1961.
[157] Fan, M.; Pan, X.; Lin, W.; Zhang, H. Carbon-Covered Hollow Nitrogen-Doped Carbon Nanoparticles and Nitrogen-Doped Carbon-Covered Hollow Carbon Nanoparticles for Oxygen Reduction. ACS Appl. Nano Mater 2020, 3, 3487−3493.
指導教授 孫亞賢(Ya Sen Sun) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明