博碩士論文 108223061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.116.81.41
姓名 曾耀弘(Yao Hong Zeng)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Enzymatic-Catalyzed Mechanisms of Cope Rearrangement of Stig Cyclases: Cation-pi Interactions Stabilizes the Unstable Intermediate)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Stig環化酶: FamC1或 HpiC1酵素可進行催化 3-香葉-3-異氰乙烯基-3H -吲哚 轉換為hapalindole型生物鹼。Stig 環化酶催化反應共三步驟: 第一步為香葉基轉移,又稱作Cope 重排反應;第二步與第三步為兩階段環化。其中Cope 重排反應為速率決定步驟,然而Stig環化酶對其催化反應的功能依舊是不清楚。在本研究中,我們研究FamC1 蛋白,先利用分子動力學進行結構平衡,再使用傘狀抽樣結合量子力學/分子動力學的分子動態模擬以及密度泛函理論,研究Cope重排反應的催化機制。我們發現天門冬胺酸214,在酪胺酸89和水分子的輔助下,能啟動質子轉移並進行酸催化反應。而Cope重排反應過程中,會產生陽離子的中間物而與苯丙胺酸88產生陽離子-交互作用,並與酪胺酸產生pi-pi交互作用,影響Cope重排反應路徑、穩定中間物。另外,在酵素的活性中心,我們觀察到在進行Cope重排反應中,酪胺酸101與反應物會有-交互作用。Stig環化酶相關的序列保留與突變實驗結果顯示,上述提到的苯丙胺酸88、酪胺酸89、酪胺酸101、天門冬胺酸214對於催化反應具有顯著的影響。我們在本文闡明關鍵胺基酸在酵素催化中的功用,這些結論有助於設計與開發新的hapalindole型生物鹼。
摘要(英) The hapalindole family of alkaloids is a structurally diverse class of natural cyanobacterial products and is active against a broad range of targets, such as antibacterial and antimitotic activities. These complex metabolites are generated by the Stig cyclases in three sequential reactions: Cope rearrangement, 6-exo-trig cyclization, and electrophilic aromatic substitution.
Nevertheless, the enzymatic mechanism of Stig cyclases for catalyzing the rate-determining step of Cope rearrangement has not yet been fully solved. In this study, we have elucidated the enzymatic-catalyzed mechanism of Cope rearrangement reaction of FamC1 by hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations in conjunction with umbrella sampling (US). We find that the Asp214, assisted by hydrogen-bonded Tyr89 and water, provides the proton source for catalyzing the Cope rearrangement. The Cope rearrangement is occurred through an ionic mechanism rather than the common concerted mechanism. The first bond breaking in the substrate is occurred in company with the proton transfer from the Asp214 yielding one cationic geranyl and one neutral indole ring fragments. More importantly, cation-pi interactions between Phe88 and cationic geranyl fragment and pi-pi interactions between Tyr101 and indole ring forming a “four-layered sandwich” structure stabilize the intermediate within FamC1 protein matrix. Key residue such as Phe88, which crucially determines the rate of the Cope rearrangement, is first recognized. Our proposed enzymatic–catalyzed mechanism clarifies the crucial roles of some key residues and thus provides clues for engineering enzymes for the rare Cope rearrangement.
關鍵字(中) ★ 計算化學
★ 酵素機制
關鍵字(英)
論文目次 摘要 i
Abstract ii
Contents iv
List of Figures v
Chapter 1: Introduction 1
Chapter 2: Methodology 7
2-1 Umbrella sampling method 7
2-2 Structure of FamC1:Substrate(S) Construction 9
2-3 QM/MM MD Simulations with Umbrella Sampling 11
2-4 Density Functional Theory (DFT) calculations 13
Chapter 3: Results and Discussion 14
3-1 Energy Profile of Cope Rearrangement of (R)-3-geranyl-3-isocyanovinyl indolenine within FamC1 14
3-2 Enzymatic-Catalyzed Mechanism of Cope Rearrangement of (R)-3-geranyl-3-isocyanovinyl indolenine within FamC1 18
3-3 Y89 and Water facilitate Proton Transfer for Catalyzing Cope Rearrangement 25
3-4 Cation -p Interactions Stabilize the Intermediate 30
3-5 p -p Interactions Stabilize the Intermediate 36
Chapter 4: Conclusion and Summary 40
References 42
Supporting information 47
參考文獻 1. Richard E. Moore, C. C., and Gregory M. L. Patterson, Hapalindoles: New Alkaloids from the Blue-Green Alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 1984, 106, 6456-6457.
2. Bhat, V.; Dave, A.; MacKay, J. A.; Rawal, V. H., The Chemistry of Hapalindoles, Fischerindoles, Ambiguines, and Welwitindolinones. Alkaloids Chem Biol 2014, 73, 65-160.
3. Cagide, E.; Becher, P. G.; Louzao, M. C.; Espina, B.; Vieytes, M. R.; Juttner, F.; Botana, L. M., Hapalindoles from the cyanobacterium fischerella: potential sodium channel modulators. Chem Res Toxicol 2014, 27 (10), 1696-706.
4. Knoot, C. J.; Khatri, Y.; Hohlman, R. M.; Sherman, D. H.; Pakrasi, H. B., Engineered Production of Hapalindole Alkaloids in the Cyanobacterium Synechococcus sp. UTEX 2973. ACS Synth Biol 2019, 8 (8), 1941-1951.
5. Khatri, Y.; Hohlman, R. M.; Mendoza, J.; Li, S.; Lowell, A. N.; Asahara, H.; Sherman, D. H., Multicomponent Microscale Biosynthesis of Unnatural Cyanobacterial Indole Alkaloids. ACS Synth Biol 2020, 9 (6), 1349-1360.
6. Hohlman, R. M.; Newmister, S. A.; Sanders, J. N.; Khatri, Y.; Li, S.; Keramati, N. R.; Lowell, A. N.; Houk, K. N.; Sherman, D. H., Structural Diversification of Hapalindole and Fischerindole Natural Products via Cascade Biocatalysis. ACS Catalysis 2021, 11 (8), 4670-4681.
7. Li, S.; Lowell, A. N.; Yu, F.; Raveh, A.; Newmister, S. A.; Bair, N.; Schaub, J. M.; Williams, R. M.; Sherman, D. H., Hapalindole/Ambiguine Biogenesis Is Mediated by a Cope Rearrangement, C-C Bond-Forming Cascade. J Am Chem Soc 2015, 137 (49), 15366-9.
8. Liu, X.; Hillwig, M. L.; Koharudin, L. M.; Gronenborn, A. M., Unified biogenesis of ambiguine, fischerindole, hapalindole and welwitindolinone: identification of a monogeranylated indolenine as a cryptic common biosynthetic intermediate by an unusual magnesium-dependent aromatic prenyltransferase. Chem Commun (Camb) 2016, 52 (8), 1737-40.
9. Newmister, S. A.; Li, S.; Garcia-Borras, M.; Sanders, J. N.; Yang, S.; Lowell, A. N.; Yu, F.; Smith, J. L.; Williams, R. M.; Houk, K. N.; Sherman, D. H., Structural basis of the Cope rearrangement and cyclization in hapalindole biogenesis. Nat Chem Biol 2018, 14 (4), 345-351.
10. Chen, C. C.; Hu, X.; Tang, X.; Yang, Y.; Ko, T. P.; Gao, J.; Zheng, Y.; Huang, J. W.; Yu, Z.; Li, L.; Han, S.; Cai, N.; Zhang, Y.; Liu, W.; Guo, R. T., The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angew Chem Int Ed Engl 2018, 57 (46), 15060-15064.
11. Tang, X.; Xue, J.; Yang, Y.; Ko, T.-P.; Chen, C.-Y.; Dai, L.; Guo, R.-T.; Zhang, Y.; Chen, C.-C., Structural insights into the calcium dependence of Stig cyclases. RSC Advances 2019, 9 (23), 13182-13185.
12. Li, S.; Newmister, S. A.; Lowell, A. N.; Zi, J.; Chappell, C. R.; Yu, F.; Hohlman, R. M.; Orjala, J.; Williams, R. M.; Sherman, D. H., Control of Stereoselectivity in Diverse Hapalindole Metabolites is Mediated by Cofactor-Induced Combinatorial Pairing of Stig Cyclases. Angew Chem Int Ed Engl 2020, 59 (21), 8166-8172.
13. D. C. WIGFIELD: S. FEINER, G. M. a. K. T., INVESTIGATIONS ON THE QUESTION OF MULTIPLE MECHANISMS IN THE COPE REARRANGEMENT-’. 1974.
14. Reichardt, C., Solvent effects in organic chemistry. Verlag Chemie: Weinheim; New York, 1979.
15. FEINE, D. C. W. A. S., Solvent effects in the Cope rearrangement. 1969.
16. Mitsuhashi Tsutomu 1 , Y. G., Analysis of Solvent Effects on the Rate of the Cope Rearrangement: Evidence for Its Hydrogen-Bond-Insusceptible Nature. 1990.
17. LUTZ, R. P., Catalysis of the Cope and Claisen Rearrangements. Chem. Rev. 1984, 84.
18. Hiroyuki Nakamura, H. I., Masateru Ito, and Yoshinori Yamamoto*, Palladium(0)-Catalyzed Cope Rearrangement of Acyclic 1,5-Dienes. Bis(π-allyl)palladium(II) Intermediate. 1999.
19. Sommer, H.; Weissbrod, T.; Marek, I., A Tandem Iridium-Catalyzed "Chain-Walking"/Cope Rearrangement Sequence. ACS Catal 2019, 9 (3), 2400-2406.
20. Chollet, W. G. D. a. A., ACID CATALYZED COPE REARRANGEMENTS OF P-ACYL-1,5-DIENES. 1981.
21. Kaldre, D.; Gleason, J. L., An Organocatalytic Cope Rearrangement. Angew Chem Int Ed Engl 2016, 55 (38), 11557-61.
22. Paquette, L. A., RECENT APPLICATIONS OF ANIONIC OXY-COPE REARRANIT, EMENTS. 1997.
23. Tanner, M. E., Mechanistic studies on the indole prenyltransferases. Nat Prod Rep 2015, 32 (1), 88-101.
24. Zhu, Q.; Liu, X., Molecular and genetic basis for early stage structural diversifications in hapalindole-type alkaloid biogenesis. Chem Commun (Camb) 2017, 53 (19), 2826-2829.
25. P.Valleau, G. M. T., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974.
26. G.M.TorrieJ.P.Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977.
27. Parrinello, A. L. a. M., Escaping free-energy minima. Proceedings of the National Academy of Sciences 2002.
28. Darve, E.; Pohorille, A., Calculating free energies using average force. The Journal of Chemical Physics 2001, 115 (20), 9169-9183.
29. Rodriguez-Gomez, D.; Darve, E.; Pohorille, A., Assessing the efficiency of free energy calculation methods. J Chem Phys 2004, 120 (8), 3563-78.
30. Sgrignani, J.; Magistrato, A., QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catalysis 2015, 5 (6), 3864-3875.
31. Voice, A. T.; Tresadern, G.; Twidale, R. M.; van Vlijmen, H.; Mulholland, A. J., Mechanism of covalent binding of ibrutinib to Bruton′s tyrosine kinase revealed by QM/MM calculations. Chem Sci 2021, 12 (15), 5511-5516.
32. ROSENBERG, S. K. a. J. M., Mu1 t i dimensional Fr e e - Ene r gy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995.
33. Kästner, J., Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2011, 1 (6), 932-942.
34. Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V., H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012, 40 (Web Server issue), W537-41.
35. Alexander D. MacKerell, J., *,† Michael Feig,‡ and Charles L. Brooks, III, Improved Treatment of the Protein Backbone in Empirical Force Fields. 2004.
36. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D., Jr., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 2010, 31 (4), 671-90.
37. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E.; Mittal, J.; Feig, M.; Mackerell, A. D., Jr., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J Chem Theory Comput 2012, 8 (9), 3257-3273.
38. Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A. D., Jr., Extension of the CHARMM General Force Field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 2012, 33 (31), 2451-68.
39. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Henin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kale, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E., Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020, 153 (4), 044130.
40. Vanommeslaeghe, K.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 2012, 52 (12), 3144-54.
41. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 2012, 52 (12), 3155-68.
42. Mayne, C. G.; Saam, J.; Schulten, K.; Tajkhorshid, E.; Gumbart, J. C., Rapid parameterization of small molecules using the Force Field Toolkit. J Comput Chem 2013, 34 (32), 2757-70.
43. William Humphrey, A. D., and Klaus Schulten, VMD: Visual Molecular Dynamics. Journal of Molecular Graphics 1996.
44. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
45. Neese, F., The ORCA program system. WIREs Computational Molecular Science 2011, 2 (1), 73-78.
46. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
47. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988, 37 (2), 785-789.
48. AI-Laham, G. A. P. a. M. A., A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. 1991.
49. Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 2004, 25 (12), 1463-73.
50. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32 (7), 1456-65.
51. Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A., Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry 1995, 16 (11), 1339-1350.
52. Millam, R. D. a. T. A. K. a. J. M., GaussView, Version 6.1. 2016.
53. Cossi*, V. B. a. M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998.
54. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 2003, 24 (6), 669-81.
55. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
56. Dougherty, D. A., The Cation−π Interaction. Accounts of Chemical Research 2013, 46 (4), 885-893.
57. Sunner, J.; Nishizawa, K.; Kebarle, P., Ion-solvent molecule interactions in the gas phase. The potassium ion and benzene. The Journal of Physical Chemistry 1981, 85 (13), 1814-1820.
58. Xiu, X.; Puskar, N. L.; Shanata, J. A. P.; Lester, H. A.; Dougherty, D. A., Nicotine binding to brain receptors requires a strong cation–π interaction. Nature 2009, 458 (7237), 534-537.
59. Knowles, R. R.; Lin, S.; Jacobsen, E. N., Enantioselective Thiourea-Catalyzed Cationic Polycyclizations. Journal of the American Chemical Society 2010, 132 (14), 5030-5032.
60. Uyeda, C.; Jacobsen, E. N., Transition-State Charge Stabilization through Multiple Non-covalent Interactions in the Guanidinium-Catalyzed Enantioselective Claisen Rearrangement. Journal of the American Chemical Society 2011, 133 (13), 5062-5075.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2022-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明