博碩士論文 108827608 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.16.15.52
姓名 阮高玟(Nguyen Cao Tuong Vi)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱
(In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry)
相關論文
★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane
★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds★ 丙烯酸胜肽用於開發醫療用途生物活性高分子材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著生物醫學應用的增長,可注射水凝膠是最有趣的領域之一,不僅在組織工程中,而且在藥物遞送應用中也引起了越來越多的關注。此外,交聯劑在水凝膠的形成、性能和應用中也發揮著重要作用。與化學交聯水凝膠相比,物理交聯水凝膠的機械性能較低,短期內穩定性較差。然而,一些化學交聯水凝膠具有苛刻的反應條件、潛在的毒性以及對環境條件(例如溫度、pH 值和離子強度)的難以響應,這限制了它們在某些領域的應用。在本研究中,合成了由 2-甲基丙烯酰氧基乙基磷酰膽鹼 (MPC) 和 2-甲基丙烯酸氨基乙酯鹽酸鹽 (AE) 組成的兩性離子共聚物,用於在聚乙二醇二丙酸酯 (DA-PEG) 的存在下製備可注射水凝膠,這是一種化學交聯劑。 交聯劑 DA-PEG 交聯劑是一種同型雙功能 PEG,它包含兩個具有高反應性的炔烴官能團。交聯劑的活化炔基將通過氨基-炔點擊反應與共聚物 p(MPC-AE)xy 的氨基動態連接。 p(MPC-AE)xy 的凝膠時間、機械性能、平衡溶脹和降解性研究了p(MPC-AE)xy_DA-PEG水凝膠。該水凝膠在2小時內形成水凝膠並顯示出高溶脹率、自癒合和活力特性。此外,烯胺鍵的形成在誘導 pH 響應水凝膠中起著重要作用。在酸性條件下,烯胺和亞胺鍵之間的可逆機制誘導了 p(MPC-AE)xy_DA-PEG 水凝膠的溶膠-凝膠轉變行為。基於上述優點,p(MPC-AE)xy_DA-PEG 水凝膠是一種潛在的材料,可用於生物醫學領域,例如組織工程和治療劑遞送.
摘要(英) With the growth of biomedical applications, in situ forming hydrogel is one of the most interesting fields that has attracted increasing attention not only in tissue engineering but also in drug delivery applications. In addition, cross-linkers also play an important role in the formation, properties, and applications of hydrogels. In comparison to chemically cross-linked hydrogels, physically cross-linked hydrogels provide lower mechanical properties and are less stable in the short term. However, some chemical cross-linking hydrogels have harsh reaction conditions, potential toxicity, and difficult responses to environmental conditions (e.g., temperature, pH, and ionic strength), which limit their application in some fields. In this research, zwitterionic copolymers consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate hydrochloride (AE) were synthesized for preparing injectable hydrogels with the presence of dipropiolate ester of polyethylene glycol (DA-PEG), which is a chemical cross-linker. The DA-PEG crosslinker is a homobifunctional PEG that contains two alkyne functional groups that have high reactivity properties. The activated alkyne groups of the crosslinker will be dynamically linked with amino groups of the copolymer p(MPC-AE)xy via the amino-yne click reaction.The gelation time, mechanical properties, equilibrium swelling, and degradability of p(MPC-AE)xy_DA-PEG hydrogel were investigated.The hydrogel formed a hydrogel within 2 hours and showed a high swelling ratio, self-healing, and viability properties. In addition, the formation of enamine bonds plays an important role in inducing the pH response hydrogel. In acid conditions, a reversible mechanism between enamine and imine bonds induced the sol-gel transition behavior of the p(MPC-AE)xy_DA-PEG hydrogel.Based on the foregoing benefits, the p(MPC-AE)xy_DA-PEG hydrogel is a potential material for use in biomedical fields such as tissue engineering and therapeutic agent delivery.
關鍵字(中) ★ 炔烴
★ 2-甲基丙烯酰氧乙基磷酰膽鹼
★ 2-甲基丙烯酸氨基乙酯鹽酸鹽
★ 點擊聚合
★ 水凝膠
★ 交聯劑
關鍵字(英) ★ alkynes
★ 2-methacryloyloxyethyl phosphorylcholine
★ 2-aminoethyl methacrylate hydrochloride
★ click polymerization
★ hydrogel
★ crosslinker
論文目次 CHINESE ABSTRACT i
ABSTRACT ii
LIST OF FIGURE vi
LIST OF TABLES ix
LIST OF ABBREVIATIONS x
Chapter I: INTRODUCTION 1
1.1 Hydrogel background 1
1.2 Formation mechanism of hydrogels 3
1.2.1. Physical crosslinker 3
1.2.2. Chemical crosslinker 5
1.3. Self-healing hydrogel 6
1.4 Click polymerization 7
1.4.1 Amino-yne click polymerization 9
1.4.2 Spontaneous amino-yne click polymerization 10
1.5. Biocompatibility material 11
1.5.1 Zwitterionic monomer 11
1.5.2. Phosphorylcholine (PC) material 12
1.5.3 Poly(ethylene glycol) 13
1.6 Tissue engineering application of hydrogel 14
1.6.1 Hydrogel Design Considerations For Cell Encapsulation 15
1.6.2 Encapsulated hydrogel degradability 16
1.7. Injectable hydrogel 16
CHAPTER II: RESEARCH OBJECTIVES 18
CHAPTER III: MATERIALS AND METHODS 19
3.1 Materials 19
3.2 Synthesis dialkyne poly ethylene glycol crosslinker 19
3.3. Synthesis (2-Methacryloyloxyethyl phosphorylcholine)-co-(2-aminoethyl methacrylate hydrochloride) polymer 19
3.4. In Situ Hydrogel Formation 20
3.5 Compressive mechanical test 22
3.6 Swelling capacity 22
3.7 Degradation test 22
3.8 Self-healing test 23
3.9 Cytotoxicity tests 23
3.10 Cell encapsulation 23
IV. RESULT 25
4.1 Synthesis dialkyne poly ethylene glycol crosslinker 25
4.2. Synthesis (2-Methacryloyloxyethyl phosphorylcholine)-co-(2-aminoethyl methacrylate hydrochloride) polymer 27
4.3 In Situ Hydrogel Formation and Gelation time 30
4.4 Gelation time 31
4.5 Compressive mechanical test 33
4.6 Swelling capacity 37
4.7 Degradation of hydrogel 38
4.8 Self-healing test 40
4.9 Cytotoxicity tests 42
4.10 Enapsulation hydrogel 43
CHAPTER 5: CONCLUSION 48
CHAPTER 6: FUTURE WORK 49
REFERRENCE 50
參考文獻 1. Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015, 6 (2), 105-121.
2. Chai, Q.; Jiao, Y.; Yu, X., Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3 (1).
3. Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H. M.; Tran, S. D., Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel) 2019, 12 (20).
4. Lynch, C. R.; Kondiah, P. P. D.; Choonara, Y. E.; du Toit, L. C.; Ally, N.; Pillay, V., Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 2020, 8, 228.
5. Tavakoli, S.; Klar, A. S., Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10 (8).
6. Ghobashy, M. M., The application of natural polymer-based hydrogels for agriculture. . Hydrogels based on natural polymers 2020, 329-356.
7. Kharkar, P. M.; Kiick, K. L.; Kloxin, A. M., Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem Soc Rev 2013, 42 (17), 7335-72.
8. Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S., Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020, 12 (11).
9. Abasalizadeh, F.; Moghaddam, S. V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S. M. B.; Torbati, M.; Akbarzadeh, A., Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020, 14, 8.
10. Munim, S. A.; Raza, Z. A., Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. J Porous Mat 2019, 26 (3), 881-901.
11. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
12. Sinawang, G.; Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A., Biofunctional hydrogels based on host-guest interactions. Polym J 2020, 52 (8), 839-859.
13. Calo, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 2015, 65, 252-267.
14. Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X. B.; Li, S.; Deng, Y.; He, N. Y., Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017, 5.
15. Pasaribu, S. P.; Kaban, J.; Ginting, M.; Silalahi, J., Preparation of In Situ Cross-Linked N-Maleoyl Chitosan-Oxidized Sodium Alginate Hydrogels for Drug Delivery Applications. Open Access Maced J Med Sci 2019, 7 (21), 3546-3553.
16. Wang, Y.; Chen, Q. B.; Chen, M.; Guan, Y.; Zhang, Y., PHEMA hydrogel films crosslinked with dynamic disulfide bonds: synthesis, swelling-induced mechanical instability and self-healing. Polym Chem-Uk 2019, 10 (35), 4844-4851.
17. Wang, A. H.; Niu, H.; He, Z. K.; Li, Y., Thermoreversible cross-linking of ethylene/propylene copolymer rubbers. Polym Chem-Uk 2017, 8 (31), 4494-4502.
18. Machado, T. O.; Sayer, C.; Araujo, P. H. H., Thiol-ene polymerisation: A promising technique to obtain novel biomaterials. Eur Polym J 2017, 86, 200-215.
19. Vugts, D. J.; Vervoort, A.; Stigter-van Walsum, M.; Visser, G. W. M.; Robillard, M. S.; Versteegen, R. M.; Vulders, R. C. M.; Herscheid, J. D. M.; van Dongen, G. A. M. S., Synthesis of Phosphine and Antibody-Azide Probes for in Vivo Staudinger Ligation in a Pretargeted Imaging and Therapy Approach. Bioconjugate Chem 2011, 22 (10), 2072-2081.
20. Liang, L. Y.; Astruc, D., The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reaction and its applications. An overview. Coordin Chem Rev 2011, 255 (23-24), 2933-2945.
21. Li, Y.; Pan, M.; Li, Y.; Huang, Y.; Guo, Q., Thiol-yne radical reaction mediated site-specific protein labeling via genetic incorporation of an alkynyl-L-lysine analogue. Org Biomol Chem 2013, 11 (16), 2624-9.
22. Huang, D.; Liu, Y.; Qin, A.; Tang, B., Recent advances in alkyne-based click polymerizations. Polym Chem-Uk 2018, 9 (21), 2853-2867.
23. Alonso, J. M.; del Olmo, J. A.; Gonzalez, R. P.; Saez-Martinez, V., Injectable Hydrogels: From Laboratory to Industrialization. Polymers-Basel 2021, 13 (4).
24. Bakaic, E.; Smeets, N. M. B.; Hoare, T., Injectable hydrogels based on poly(ethylene glycol) and derivatives as functional biomaterials. Rsc Adv 2015, 5 (45), 35469-35486.
25. Maiz-Fernandez, S.; Perez-Alvarez, L.; Ruiz-Rubio, L.; Vilas-Vilela, J. L.; Lanceros-Mendez, S., Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2020, 12 (10).
26. Cirillo, G.; Spizzirri, U. G.; Curcio, M.; Nicoletta, F. P.; Iemma, F., Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019, 11 (9).
27. Sun, Y. N.; Nan, D.; Jin, H. Q.; Qu, X. Z., Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Test 2020, 81.
28. Rammal, H.; GhavamiNejad, A.; Erdem, A.; Mbeleck, R.; Nematollahi, M.; Diltemiz, S. E.; Alem, H.; Darabi, M. A.; Ertas, Y. N.; Caterson, E. J.; Ashammakhi, N., Advances in biomedical applications of self-healing hydrogels. Mater Chem Front 2021, 5 (12), 4368-4400.
29. Uman, S.; Dhand, A.; Burdick, J. A., Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J Appl Polym Sci 2020, 137 (25).
30. Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G.; Dolatshahi-Pirouz, A., Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? Adv Sci 2019, 6 (16).
31. Tian, H. Y.; Tang, Z. H.; Zhuang, X. L.; Chen, X. S.; Jing, X. B., Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 2012, 37 (2), 237-280.
32. Hein, C. D.; Liu, X. M.; Wang, D., Click chemistry, a powerful tool for pharmaceutical sciences. Pharm Res-Dordr 2008, 25 (10), 2216-2230.
33. Jin, T. N.; Yan, M.; Yamamoto, Y., Click Chemistry of Alkyne-Azide Cycloaddition using Nanostructured Copper Catalysts. Chemcatchem 2012, 4 (9), 1217-1229.
34. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl 2002, 41 (14), 2596-9.
35. Franc, G.; Kakkar, A. K., Diels-Alder "Click" Chemistry in Designing Dendritic Macromolecules. Chem-Eur J 2009, 15 (23), 5630-5639.
36. Kumaraswamy, G.; Ankamma, K.; Pitchaiah, A., Tandem epoxide or aziridine ring opening by azide/copper catalyzed [3+2] cycloaddition: efficient synthesis of 1,2,3-triazolo beta-hydroxy or beta-tosylamino functionality motif. J Org Chem 2007, 72 (25), 9822-5.
37. Heredia, K. L.; Tolstyka, Z. P.; Maynard, H. D., Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules 2007, 40 (14), 4772-4779.
38. Dirksen, A.; Dawson, P. E., Rapid Oxime and Hydrazone Ligations with Aromatic Aldehydes for Biomolecular Labeling. Bioconjugate Chem 2008, 19 (12), 2543-2548.
39. Campos, L. M.; Killops, K. L.; Sakai, R.; Paulusse, J. M. J.; Damiron, D.; Drockenmuller, E.; Messmore, B. W.; Hawker, C. J., Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 2008, 41 (19), 7063-7070.
40. Fairbanks, B. D.; Sims, E. A.; Anseth, K. S.; Bowman, C. N., Reaction Rates and Mechanisms for Radical, Photoinitated Addition of Thiols to Alkynes, and Implications for Thiol-Yne Photopolymerizations and Click Reactions. Macromolecules 2010, 43 (9), 4113-4119.
41. Sletten, E. M.; Bertozzi, C. R., Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew Chem Int Edit 2009, 48 (38), 6974-6998.
42. Worch, J. C.; Stubbs, C. J.; Price, M. J.; Dove, A. P., Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chem Rev 2021, 121 (12), 6744-6776.
43. Chisholm, D. R.; Valentine, R.; Pohl, E.; Whiting, A., Conjugate Addition of 3-Buytn-2-one to Anilines in Ethanol: Alkene Geometric Insights through In Situ FTIR Monitoring. J Org Chem 2016, 81 (17), 7557-65.
44. Fenton, O. S.; Andresen, J. L.; Paolini, M.; Langer, R., beta-Aminoacrylate Synthetic Hydrogels: Easily Accessible and Operationally Simple Biomaterials Networks. Angew Chem Int Ed Engl 2018, 57 (49), 16026-16029.
45. Li, H. K.; Wang, J.; Sun, J. Z.; Hu, R. R.; Qin, A. J.; Tang, B. Z., Metal-free click polymerization of propiolates and azides: facile synthesis of functional poly(aroxycarbonyltriazole)s. Polym Chem-Uk 2012, 3 (4), 1075-1083.
46. Li, D. A.; Song, Y.; He, J. L.; Zhang, M. Z.; Ni, P. H., Polymer-Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. Acs Biomater Sci Eng 2019, 5 (5), 2307-2315.
47. Blackman, L. D.; Gunatillake, P. A.; Cass, P.; Locock, K. E. S., An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem Soc Rev 2019, 48 (3), 757-770.
48. Racovita, S.; Trofin, M. A.; Loghin, D. F.; Zaharia, M. M.; Bucatariu, F.; Mihai, M.; Vasiliu, S., Polybetaines in Biomedical Applications. Int J Mol Sci 2021, 22 (17).
49. Potaufeux, J. E.; Odent, J.; Notta-Cuvier, D.; Lauro, F.; Raquez, J. M., A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem-Uk 2020, 11 (37), 5914-5936.
50. Lin, X.; Ishihara, K., Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives. J Biomater Sci Polym Ed 2014, 25 (14-15), 1461-78.
51. Rose, S. F.; Lewis, A. L.; Hanlon, G. W.; Lloyd, A. W., Biological responses to cationically charged phosphorylcholine-based materials in vitro. Biomaterials 2004, 25 (21), 5125-35.
52. Nicodemus, G. D.; Bryant, S. J., Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2008, 14 (2), 149-65.
53. Soni, J.; Sahiba, N.; Sethiya, A.; Agarwal, S., Polyethylene glycol: A promising approach for sustainable organic synthesis. J Mol Liq 2020, 315.
54. Mansour, F. R.; Zhou, L.; Danielson, N. D., Applications of Poly(Ethylene)Glycol (PEG) in Separation Science. Chromatographia 2015, 78 (23-24), 1427-1442.
55. El-Sherbiny, I. M.; Yacoub, M. H., Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013, 2013 (3), 316-42.
56. Zhang, Y. W.; Li, Z. X.; Guan, J. J.; Mao, Y. J.; Zhou, P. H., Hydrogel: A potential therapeutic material for bone tissue engineering. Aip Adv 2021, 11 (1).
57. Klotz, B. J.; Oosterhoff, L. A.; Utomo, L.; Lim, K. S.; Vallmajo-Martin, Q.; Clevers, H.; Woodfield, T. B. F.; Rosenberg, A.; Malda, J.; Ehrbar, M.; Spee, B.; Gawlitta, D., A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Adv Healthc Mater 2019, 8 (19), e1900979.
58. Echalier, C.; Valot, L.; Martinez, J.; Mehdi, A.; Subra, G., Chemical cross-linking methods for cell encapsulation in hydrogels. Mater Today Commun 2019, 20.
59. Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A., Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009, 30 (7), 1073-81.
60. Stefanadis, C.; Chrysochoou, C.; Markou, D.; Petraki, K.; Panagiotakos, D. B.; Fasoulakis, C.; Kyriakidis, A.; Papadimitriou, C.; Toutouzas, P. K., Increased temperature of malignant urinary bladder tumors in vivo: the application of a new method based on a catheter technique. J Clin Oncol 2001, 19 (3), 676-81.
61. Liu, Y.; Ding, X. W.; Li, J. H.; Luo, Z.; Hu, Y.; Liu, J. J.; Dai, L. L.; Zhou, J.; Hou, C. J.; Cai, K. Y., Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology 2015, 26 (14).
62. Sun, C. L.; Li, X. Y.; Du, X. D.; Wang, T., Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy. Int J Biol Macromol 2018, 112, 65-73.
63. Li, Z. F.; Du, X. Y.; Cui, X. J.; Wang, Z. H., Ultrasonic-assisted fabrication and release kinetics of two model redox-responsive magnetic microcapsules for hydrophobic drug delivery. Ultrason Sonochem 2019, 57, 223-232.
64. Knezevic, N. Z.; Trewyn, B. G.; Lin, V. S. Y., Light- and pH-Responsive Release of Doxorubicin from a Mesoporous Silica-Based Nanocarrier. Chem-Eur J 2011, 17 (12), 3338-3342.
65. Yoon, H. M.; Kang, M. S.; Choi, G. E.; Kim, Y. J.; Bae, C. H.; Yu, Y. B.; Jeong, Y. I., Stimuli-Responsive Drug Delivery of Doxorubicin Using Magnetic Nanoparticle Conjugated Poly(ethylene glycol)-g-Chitosan Copolymer. Int J Mol Sci 2021, 22 (23).
66. Cao, Y. L.; Rodriguez, A.; Vacanti, M.; Ibarra, C.; Arevalo, C.; Vacanti, C. A., Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomat Sci-Polym E 1998, 9 (5), 475-487.
67. Bin Ihsan, A.; Sun, T. L.; Kurokawa, T.; Karobi, S. N.; Nakajima, T.; Nonoyama, T.; Roy, C. K.; Luo, F.; Gong, J. P., Self-Healing Behaviors of Tough Polyampholyte Hydrogels. Macromolecules 2016, 49 (11), 4245-4252.
68. Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S., Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic pH. Acs Macro Lett 2015, 4 (2), 220-224.
69. Truong, V. X.; Dove, A. P., Organocatalytic, Regioselective Nucleophilic "Click" Addition of Thiols to Propiolic Acid Esters for Polymer-Polymer Coupling. Angew Chem Int Edit 2013, 52 (15), 4132-4136.
70. Jie, X. M.; Shang, Y. P.; Chen, Z. N.; Zhang, X. F.; Zhuang, W.; Su, W. P., Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO. Nat Commun 2018, 9.
71. Ishihara, K.; Mu, M. W.; Konno, T.; Inoue, Y.; Fukazawa, K., The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomat Sci-Polym E 2017, 28 (10-12), 884-899.
72. Huang, J. C.; Jiang, X. L., Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino-Yne Click Reaction. Acs Appl Mater Inter 2018, 10 (1), 361-370.
73. Xin, Y.; Yuan, J. Y., Schiff′s base as a stimuli-responsive linker in polymer chemistry. Polym Chem-Uk 2012, 3 (11), 3045-3055.
74. Zhang, Y. X.; Liu, Y. L.; Ren, B. P.; Zhang, D.; Xie, S. W.; Chang, Y.; Yang, J. T.; Wu, J.; Xu, L. J.; Zheng, J., Fundamentals and applications of zwitterionic antifouling polymers. J Phys D Appl Phys 2019, 52 (40).
75. Wang, J. T.; Wang, L. F.; Wu, C. S.; Pei, X. J.; Cong, Y.; Zhang, R.; Fu, J., Antibacterial Zwitterionic Polyelectrolyte Hydrogel Adhesives with Adhesion Strength Mediated by Electrostatic Mismatch. Acs Appl Mater Inter 2020, 12 (41), 46816-46826.
76. Han, G.; Liu, J. T.; Lu, K. J.; Chung, T. S., Advanced Anti-Fouling Membranes for Osmotic Power Generation from Wastewater via Pressure Retarded Osmosis (PRO). Environ Sci Technol 2018, 52 (11), 6686-6694.
指導教授 黃俊仁 李宇翔(Chun-Jen Huang Yu-Hsiang Lee) 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明