博碩士論文 107226022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.139.64.23
姓名 柯宏達(Da-Hung Ke)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 自組性單分子層界面修飾應用於有機電晶體之研究
(Interface modification with self-assembled monolayer applied to organic transistor)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-23以後開放)
摘要(中) 本論文研究一系列不同碳鏈長度之磷酸自組性單分子層(Phosphonic acid self-assembled molecules, PA SAMs)應用於p-type有機半導體dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b](DNTT)之橫向和垂直電晶體以及DNTT結合無機半導體ZnO之雙載子電晶體,探討PA SAMs在金屬氧化絕緣層、電極、無機半導體的表面處理對DNTT薄膜結構與電性的影響。

在DNTT橫向電晶體中,發現以dodecyl-PA SAM (C12)進行Al2O3絕緣層表面處理可獲得最高的電洞遷移率 3.9 cm2/Vs,相較於無表面處理之Al2O3提升6倍。在DNTT垂直電晶體中,發現利用C12進行開孔金源極表面處理也獲得最高的電洞遷移率,而在ZnO/DNTT雙載子電晶體在電性上也有類似趨勢。

進一步透過原子力顯微鏡、X光繞射儀、近緣X光吸收細微結構分析表面形貌、晶格結構、有機分子傾角差異,證實DNTT沉積在C12處理之Al2O3將形成較大的晶粒結構和較少的晶界,為造成橫向和垂直方向電荷遷移率提昇之主要原因。此外,透過紫外光電子能譜量測也發現在DNTT垂直電晶體之開孔金源極進行較長碳鏈的PA SAMs處理會略微增加注入能障,但對於電晶體電流的影響並不明顯。在ZnO/DNTT雙載子電晶體中,C12處理的ZnO表面也有助於提昇DNTT電洞遷移率和減少磁滯現象,亦代表減少的表面缺陷態。

總體而言,PA SAMs可廣泛的應用於金屬氧化介電材料、金屬、和金屬氧化半導體表面修飾,適當的PA SAMs可有效的控制上方沉積的有機薄膜結構,近而提升不同元件之電性表現。
摘要(英) This thesis investigates the application of a series of phosphonic acid self-assembled monolayers (PA SAMs) with different alkyl chain lengths to p-type organic semiconductors dinaphtho[2,3-b:2′,3 ′-f]thieno[3,2-b] (DNTT) as lateral and vertical transistors and DNTT combined with the inorganic semiconductor ZnO as ambipolar transistors to investigate the effect of PA SAMs on the structure and electrical properties of DNTT films by surface modification of metal oxide dielectric layers, electrodes, and inorganic semiconductors.
In the DNTT lateral transistors, the highest hole mobility of 3.9 cm2/Vs was found to be achieved by surface modification of the Al2O3 insulator layer with dodecyl PA SAM (C12), which is 6 times higher than Al2O3 without surface modification. In the DNTT vertical transistors, the highest hole mobility was found to be achieved if the perforated Au source electrode were modified with C12, and a similar trend was observed in the ZnO/DNTT ambipolar transistors in terms of electrical properties.
Further analyses of morphology, crystallinity and molecular orientation by Atomic Force Microscope (AFM), X-Ray Diffraction (XRD) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) confirm that deposition of DNTT on C12-modified Al2O3 forms larger grain structures and fewer grain boundaries, which is the main cause for the increased charge transport in both the lateral and vertical directions. In addition, UV photoelectron spectroscopy (UPS) measurements also show that modification of PA SAMs with longer alkyl chains in DNTT perforated Au source electrode slightly increases the injection barrier, but the effect on the transistor current is not significant.
In ZnO/DNTT ambipolar transistors, the C12-modified ZnO surface also contributes to improved DNTT hole mobility and reduced hysteresis, and represents a reduction in surface defect states.
Overall, we show that PA SAMs can be widely applied for surface modification of metal oxide dielectric materials, metals, and metal oxide semiconductors. Appropriate PA SAMs can effectively control the organic film structure deposited on top, thus enhancing the electrical performance of different device.
關鍵字(中) ★ 有機電晶體
★ 自組裝單分子層
關鍵字(英) ★ Organic transistor
★ Self-assembled monolayer
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xv

第一章緒論 1
1-1前言 1
1-2有機場效電晶體 2
1-3蕭特機垂直電晶體 6
1-4自組性單分子層 9
1-5研究目的與動機 11

第二章 基礎原理 12
2-1場效電晶體 12
2-1-1有機場效電晶體架構 13
2-1-2有機場效電晶體工作原理 15
2-1-3有機場效電晶體電流電壓關係 19
2-2垂直式電晶體 22
2-2-1垂直電晶體開狀態工作原理 23
2-2-2垂直電晶體關狀態工作原理 26
2-2-3垂直電晶體轉換特性曲線 29
2-3具高穩定性、效能P型有機半導體分子(DNTT) 30
2-4自組性單分子層簡介及應用 33

第三章 實驗部分 38
3-1材料介紹 38
3-1-1介電層材料 38
3-1-2自組性單分子層材料 39
3-1-3金屬電極材料 42
3-2實驗儀器及量測設備 43
3-2-1實驗儀器 43
3-3實驗製程及製備 57
3-3-1垂直式有機電晶體製程 57
3-3-2雙載子橫向電晶體製程 61
第四章 結果與討論 65
4-1 DNTT橫向電晶體 65
4-1-1橫向有機電晶體電性探討 65
4-1-2 SAM處理之DNTT表面形貌 73
4-1-3 DNTT之XRD分析 77
4-1-4 DNTT薄膜之近緣X光吸收細微結構 80
4-1-5橫向有機電晶體總結 82
4-2 DNTT垂直式電晶體 83
4-2-1垂直式有機電晶體電性探討 83
4-2-2自組性單分子層修飾金屬功函數 88
4-2-3 垂直式有機電晶體總結 92
4-3DNTT/ZnO雙載子電晶體 93
4-3-1 ZnO橫向電晶體電性 93
4-3-2 ZnO/DNTT雙載子電晶體電性分析 96
4-3-3DNTT/ZnO雙載子電晶體總結 103

第五章 結論與未來展望 104

第六章 參考文獻 106
參考文獻 [1] S. E. Thompson and S. Parthasarathy, "Moore′s law: the future of Si microelectronics," Materials today, vol. 9, pp. 20-25, 2006.
[2] G. Horowitz, X.-Z. Peng, D. Fichou, and F. Garnier, "Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors," Synthetic metals, vol. 51, pp. 419-424, 1992.
[3] R. Scholz, D. Lehmann, A. D. M?ller, F. M?ller, and D. Zahn, "Potentiometry on pentacene OFETs: Charge carrier mobilities and injection barriers in bottom and top contact configurations," physica status solidi (a), vol. 205, pp. 591-599, 2008.
[4] R. P. Ortiz, H. Brisset, and C. Videlot-Ackermann, "Perfluoroarene units in distyryl-oligothiophene analogues: An efficient electron density confinement preventing n-type transport in organic thin film transistors," Synthetic metals, vol. 162, pp. 857-861, 2012.
[5] W. Gu, W. Jin, B. Wei, J. Zhang, and J. Wang, "High-performance organic field-effect transistors based on copper/copper sulphide bilayer source-drain electrodes," Applied Physics Letters, vol. 97, p. 267, 2010.
[6] T. Maeda, H. Kato, and H. Kawakami, "Organic field-effect transistors with reduced contact resistance," Applied physics letters, vol. 89, p. 123508, 2006.
[7] J. Youn, G. R. Dholakia, H. Huang, J. W. Hennek, A. Facchetti, and T. J. Marks, "Influence of Thiol Self?Assembled Monolayer Processing on Bottom?Contact Thin?Film Transistors Based on n?Type Organic Semiconductors," Advanced Functional Materials, vol. 22, pp. 1856-1869, 2012.
[8] S. Obata and Y. Shimoi, "Control of molecular orientations of poly (3-hexylthiophene) on self-assembled monolayers: molecular dynamics simulations," Physical Chemistry Chemical Physics, vol. 15, pp. 9265-9270, 2013.
[9] C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, et al., "Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors," Physical Chemistry Chemical Physics, vol. 10, pp. 2302-2307, 2008.
[10] C.-A. Di, Y. Liu, G. Yu, and D. Zhu, "Interface engineering: an effective approach toward high-performance organic field-effect transistors," Accounts of chemical research, vol. 42, pp. 1573-1583, 2009.
[11] F.-C. Chen and C.-H. Liao, "Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics," Applied physics letters, vol. 93, p. 335, 2008.
[12] D. Kumaki, M. Yahiro, Y. Inoue, and S. Tokito, "Air stable, high performance pentacene thin-film transistor fabricated on Si O 2 gate insulator treated with β-phenethyltrichlorosilane," Applied physics letters, vol. 90, p. 133511, 2007.
[13] C.-a. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, et al., "Effect of dielectric layers on device stability of pentacene-based field-effect transistors," Physical Chemistry Chemical Physics, vol. 11, pp. 7268-7273, 2009.
[14] J. Lilienfeld, "Us Patent 1 745 175 (1930); US," Patent, vol. 1, p. 018, 1933.
[15] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular electronic device: Field?effect transistor with a polythiophene thin film," Applied Physics Letters, vol. 49, pp. 1210-1212, 1986.
[16] W. Gill, "Drift mobilities in amorphous charge?transfer complexes of trinitrofluorenone and poly?n?vinylcarbazole," Journal of Applied Physics, vol. 43, pp. 5033-5040, 1972.
[17] J. Zaumseil and H. Sirringhaus, "Electron and ambipolar transport in organic field-effect transistors," Chemical reviews, vol. 107, pp. 1296-1323, 2007.
[18] L. Ma and Y. Yang, "Unique architecture and concept for high-performance organic transistors," Applied physics letters, vol. 85, pp. 5084-5086, 2004.
[19] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, et al., "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates," Applied Physics Letters, vol. 95, p. 302, 2009.
[20] C.-M. Keum, I.-H. Lee, S.-H. Lee, G. J. Lee, M.-H. Kim, and S.-D. Lee, "Quasi-surface emission in vertical organic light-emitting transistors with network electrode," Optics express, vol. 22, pp. 14750-14756, 2014.
[21] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, and N. Tessler, "Self-assembled metallic nanowire-based vertical organic field-effect transistor," ACS applied materials & interfaces, vol. 7, pp. 2149-2152, 2015.
[22] H. Yu, Z. Dong, J. Guo, D. Kim, and F. So, "Vertical organic field-effect transistors for integrated optoelectronic applications," ACS applied materials & interfaces, vol. 8, pp. 10430-10435, 2016.
[23] W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
[24] J. Sagiv, "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces," Journal of the American Chemical Society, vol. 102, pp. 92-98, 1980.
[25] J. H. Sch?n, H. Meng, and Z. Bao, "Self-assembled monolayer organic field-effect transistors," Nature, vol. 413, pp. 713-716, 2001.
[26] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, "Polymer solar cells that use self?assembled?monolayer?modified ZnO/metals as cathodes," Advanced Materials, vol. 20, pp. 2376-2382, 2008.
[27] N. K. Chaki and K. Vijayamohanan, "Self-assembled monolayers as a tunable platform for biosensor applications," Biosensors and Bioelectronics, vol. 17, pp. 1-12, 2002.
[28] M. Ando, M. Kawasaki, S. Imazeki, H. Sasaki, and T. Kamata, "Self-aligned self-assembly process for fabricating organic thin-film transistors," Applied Physics Letters, vol. 85, pp. 1849-1851, 2004.
[29] J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, et al., "Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors," The Journal of Physical Chemistry Letters, vol. 2, pp. 841-845, 2011.
[30] O. Fenwick, C. Van Dyck, K. Murugavel, D. Cornil, F. Reinders, S. Haar, et al., "Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes," Journal of Materials Chemistry C, vol. 3, pp. 3007-3015, 2015.
[31] Y. Su, W. Xie, Y. Li, Y. Shi, N. Zhao, and J. Xu, "A low-temperature, solution-processed high-k dielectric for low-voltage, high-performance organic field-effect transistors (OFETs)," Journal of Physics D: Applied Physics, vol. 46, p. 095105, 2013.
[32] J. Peng, Q. Sun, S. Wang, H.-Q. Wang, and W. Ma, "Low-temperature solution-processed alumina as gate dielectric for reducing the operating-voltage of organic field-effect transistors," Applied Physics Letters, vol. 103, p. 061603, 2013.
[33] M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, F. So, et al., "Low-voltage, low-power, organic light-emitting transistors for active matrix displays," Science, vol. 332, pp. 570-573, 2011.
[34] M. A. McCarthy, B. Liu, and A. G. Rinzler, "High current, low voltage carbon nanotube enabled vertical organic field effect transistors," Nano letters, vol. 10, pp. 3467-3472, 2010.
[35] K. F. Seidel, L. Rossi, R. M. Mello, and I. A. H?mmelgen, "Vertical organic field effect transistor using sulfonated polyaniline/aluminum bilayer as intermediate electrode," Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1052-1056, 2013.
[36] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors," Applied physics letters, vol. 81, pp. 268-270, 2002.
[37] M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, "Gate dielectric chemical structure? organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors," Journal of the American Chemical Society, vol. 128, pp. 12851-12869, 2006.
[38] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, et al., "High mobility of pentacene field-effect transistors with polyimide gate dielectric layers," Applied physics letters, vol. 84, pp. 3789-3791, 2004.
[39] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, "Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor," Applied physics letters, vol. 90, p. 132104, 2007.
[40] M. Waqas Alam, Z. Wang, S. Naka, and H. Okada, "Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes," Applied Physics Letters, vol. 102, p. 061105, 2013.
[41] J.-Z. W. Cheng-Yu Lu, Hong-Yu Su, Dian Luo, Yun-Lan Chen, Chih-Hao Chang, Hsin-Hua Chang. (2015). Effective electron and hole injection structures in blue inverted organic light-emitting diodes.
[42] X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, et al., "Controlling electron and hole charge injection in ambipolar organic field?effect transistors by self?assembled monolayers," Advanced Functional Materials, vol. 19, pp. 2407-2415, 2009.
[43] B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. Blom, "Tuning of metal work functions with self?assembled monolayers," Advanced Materials, vol. 17, pp. 621-625, 2005.
[44] A. J. Ben-Sasson and N. Tessler, "Patterned electrode vertical field effect transistor: Theory and experiment," Journal of Applied Physics, vol. 110, p. 044501, 2011.
[45] Y. Preezant and N. Tessler, "Self-consistent analysis of the contact phenomena in low-mobility semiconductors," Journal of Applied Physics, vol. 93, pp. 2059-2064, 2003.
[46] T. Yamamoto and K. Takimiya, "Facile synthesis of highly π-extended heteroarenes, dinaphtho [2, 3-b: 2 ′, 3 ′-f] chalcogenopheno [3, 2-b] chalcogenophenes, and their application to field-effect transistors," Journal of the American Chemical Society, vol. 129, pp. 2224-2225, 2007.
[47] U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, et al., "Flexible low?voltage organic transistors and circuits based on a high?mobility organic semiconductor with good air stability," Advanced Materials, vol. 22, pp. 982-985, 2010.
[48] BL., M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, et al., "Low-voltage, low-power, organic light-emitting transistors for active matrix displays," Science, vol. 332, pp. 570-573, 2011.
[49] B. O. Acton, G. G. Ting, P. J. Shamberger, F. S. Ohuchi, H. Ma, and A. K.-Y. Jen, "Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide," ACS applied materials & interfaces, vol. 2, pp. 511-520, 2010.
[50] S. P. Tiwari, K. A. Knauer, A. Dindar, and B. Kippelen, "Performance comparison of pentacene organic field-effect transistors with SiO2 modified with octyltrichlorosilane or octadecyltrichlorosilane," Organic Electronics, vol. 13, pp. 18-22, 2012.
[51] D.-K. Kim, M. Lee, B. Kim, and J.-H. Choi, "Low-voltage, high-performance polymeric field-effect transistors based on self-assembled monolayer-passivated HfOx dielectrics: Correlation between trap density, carrier mobility, and operation voltage," Organic Electronics, vol. 74, pp. 135-143, 2019.
[52] K. H. Lam, T. R. B. Foong, J. Zhang, A. C. Grimsdale, and Y. M. Lam, "Carboxylic acid mediated self-assembly of small molecules for organic thin film transistors," Organic Electronics, vol. 15, pp. 1592-1597, 2014.
[53] I. Hill, C. Weinert, L. Kreplak, and B. Van Zyl, "Influence of self-assembled monolayer chain length on modified gate dielectric pentacene thin-film transistors," Applied Physics A, vol. 95, pp. 81-87, 2009.
[54] K. Fukuda, T. Hamamoto, T. Yokota, T. Sekitani, U. Zschieschang, H. Klauk, et al., "Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors," Applied Physics Letters, vol. 95, p. 296, 2009.
[55] C. Yang, Y. Kwack, S. H. Kim, T. K. An, K. Hong, S. Nam, et al., "Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities," Organic Electronics, vol. 12, pp. 411-418, 2011.
[56] O. Acton, M. Dubey, T. Weidner, K. M. O′Malley, T. W. Kim, G. G. Ting, et al., "Simultaneous Modification of Bottom?Contact Electrode and Dielectric Surfaces for Organic Thin?Film Transistors Through Single?Component Spin?Cast Monolayers," Advanced Functional Materials, vol. 21, pp. 1476-1488, 2011.
[57] S. Haas, Y. Takahashi, K. Takimiya, and T. Hasegawa, "High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors," Applied Physics Letters, vol. 95, p. 022111, 2009.
[58] 陳宇翔, "低電壓驅動垂直有機電晶體之研究," 碩士, 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2019.
[59] H. Ma, O. Acton, D. O. Hutchins, N. Cernetic, and A. K.-Y. Jen, "Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors," Physical Chemistry Chemical Physics, vol. 14, pp. 14110-14126, 2012.
[60] C. H. Ahn, C. H. Woo, S. Hwang, J. Y. Lee, H. K. Cho, H. J. Cho, et al., "Influence of active layer thickness and annealing in zinc oxide TFT grown by atomic layer deposition," Surface and Interface Analysis, vol. 42, pp. 955-958, 2010.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明