參考文獻 |
[1] S. E. Thompson and S. Parthasarathy, "Moore′s law: the future of Si microelectronics," Materials today, vol. 9, pp. 20-25, 2006.
[2] G. Horowitz, X.-Z. Peng, D. Fichou, and F. Garnier, "Role of the semiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors," Synthetic metals, vol. 51, pp. 419-424, 1992.
[3] R. Scholz, D. Lehmann, A. D. M?ller, F. M?ller, and D. Zahn, "Potentiometry on pentacene OFETs: Charge carrier mobilities and injection barriers in bottom and top contact configurations," physica status solidi (a), vol. 205, pp. 591-599, 2008.
[4] R. P. Ortiz, H. Brisset, and C. Videlot-Ackermann, "Perfluoroarene units in distyryl-oligothiophene analogues: An efficient electron density confinement preventing n-type transport in organic thin film transistors," Synthetic metals, vol. 162, pp. 857-861, 2012.
[5] W. Gu, W. Jin, B. Wei, J. Zhang, and J. Wang, "High-performance organic field-effect transistors based on copper/copper sulphide bilayer source-drain electrodes," Applied Physics Letters, vol. 97, p. 267, 2010.
[6] T. Maeda, H. Kato, and H. Kawakami, "Organic field-effect transistors with reduced contact resistance," Applied physics letters, vol. 89, p. 123508, 2006.
[7] J. Youn, G. R. Dholakia, H. Huang, J. W. Hennek, A. Facchetti, and T. J. Marks, "Influence of Thiol Self?Assembled Monolayer Processing on Bottom?Contact Thin?Film Transistors Based on n?Type Organic Semiconductors," Advanced Functional Materials, vol. 22, pp. 1856-1869, 2012.
[8] S. Obata and Y. Shimoi, "Control of molecular orientations of poly (3-hexylthiophene) on self-assembled monolayers: molecular dynamics simulations," Physical Chemistry Chemical Physics, vol. 15, pp. 9265-9270, 2013.
[9] C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, et al., "Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors," Physical Chemistry Chemical Physics, vol. 10, pp. 2302-2307, 2008.
[10] C.-A. Di, Y. Liu, G. Yu, and D. Zhu, "Interface engineering: an effective approach toward high-performance organic field-effect transistors," Accounts of chemical research, vol. 42, pp. 1573-1583, 2009.
[11] F.-C. Chen and C.-H. Liao, "Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics," Applied physics letters, vol. 93, p. 335, 2008.
[12] D. Kumaki, M. Yahiro, Y. Inoue, and S. Tokito, "Air stable, high performance pentacene thin-film transistor fabricated on Si O 2 gate insulator treated with β-phenethyltrichlorosilane," Applied physics letters, vol. 90, p. 133511, 2007.
[13] C.-a. Di, G. Yu, Y. Liu, Y. Guo, X. Sun, J. Zheng, et al., "Effect of dielectric layers on device stability of pentacene-based field-effect transistors," Physical Chemistry Chemical Physics, vol. 11, pp. 7268-7273, 2009.
[14] J. Lilienfeld, "Us Patent 1 745 175 (1930); US," Patent, vol. 1, p. 018, 1933.
[15] A. Tsumura, H. Koezuka, and T. Ando, "Macromolecular electronic device: Field?effect transistor with a polythiophene thin film," Applied Physics Letters, vol. 49, pp. 1210-1212, 1986.
[16] W. Gill, "Drift mobilities in amorphous charge?transfer complexes of trinitrofluorenone and poly?n?vinylcarbazole," Journal of Applied Physics, vol. 43, pp. 5033-5040, 1972.
[17] J. Zaumseil and H. Sirringhaus, "Electron and ambipolar transport in organic field-effect transistors," Chemical reviews, vol. 107, pp. 1296-1323, 2007.
[18] L. Ma and Y. Yang, "Unique architecture and concept for high-performance organic transistors," Applied physics letters, vol. 85, pp. 5084-5086, 2004.
[19] A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, et al., "Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates," Applied Physics Letters, vol. 95, p. 302, 2009.
[20] C.-M. Keum, I.-H. Lee, S.-H. Lee, G. J. Lee, M.-H. Kim, and S.-D. Lee, "Quasi-surface emission in vertical organic light-emitting transistors with network electrode," Optics express, vol. 22, pp. 14750-14756, 2014.
[21] A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, and N. Tessler, "Self-assembled metallic nanowire-based vertical organic field-effect transistor," ACS applied materials & interfaces, vol. 7, pp. 2149-2152, 2015.
[22] H. Yu, Z. Dong, J. Guo, D. Kim, and F. So, "Vertical organic field-effect transistors for integrated optoelectronic applications," ACS applied materials & interfaces, vol. 8, pp. 10430-10435, 2016.
[23] W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science, vol. 1, pp. 513-538, 1946.
[24] J. Sagiv, "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces," Journal of the American Chemical Society, vol. 102, pp. 92-98, 1980.
[25] J. H. Sch?n, H. Meng, and Z. Bao, "Self-assembled monolayer organic field-effect transistors," Nature, vol. 413, pp. 713-716, 2001.
[26] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, "Polymer solar cells that use self?assembled?monolayer?modified ZnO/metals as cathodes," Advanced Materials, vol. 20, pp. 2376-2382, 2008.
[27] N. K. Chaki and K. Vijayamohanan, "Self-assembled monolayers as a tunable platform for biosensor applications," Biosensors and Bioelectronics, vol. 17, pp. 1-12, 2002.
[28] M. Ando, M. Kawasaki, S. Imazeki, H. Sasaki, and T. Kamata, "Self-aligned self-assembly process for fabricating organic thin-film transistors," Applied Physics Letters, vol. 85, pp. 1849-1851, 2004.
[29] J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, et al., "Work-function engineering of graphene electrodes by self-assembled monolayers for high-performance organic field-effect transistors," The Journal of Physical Chemistry Letters, vol. 2, pp. 841-845, 2011.
[30] O. Fenwick, C. Van Dyck, K. Murugavel, D. Cornil, F. Reinders, S. Haar, et al., "Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes," Journal of Materials Chemistry C, vol. 3, pp. 3007-3015, 2015.
[31] Y. Su, W. Xie, Y. Li, Y. Shi, N. Zhao, and J. Xu, "A low-temperature, solution-processed high-k dielectric for low-voltage, high-performance organic field-effect transistors (OFETs)," Journal of Physics D: Applied Physics, vol. 46, p. 095105, 2013.
[32] J. Peng, Q. Sun, S. Wang, H.-Q. Wang, and W. Ma, "Low-temperature solution-processed alumina as gate dielectric for reducing the operating-voltage of organic field-effect transistors," Applied Physics Letters, vol. 103, p. 061603, 2013.
[33] M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, F. So, et al., "Low-voltage, low-power, organic light-emitting transistors for active matrix displays," Science, vol. 332, pp. 570-573, 2011.
[34] M. A. McCarthy, B. Liu, and A. G. Rinzler, "High current, low voltage carbon nanotube enabled vertical organic field effect transistors," Nano letters, vol. 10, pp. 3467-3472, 2010.
[35] K. F. Seidel, L. Rossi, R. M. Mello, and I. A. H?mmelgen, "Vertical organic field effect transistor using sulfonated polyaniline/aluminum bilayer as intermediate electrode," Journal of Materials Science: Materials in Electronics, vol. 24, pp. 1052-1056, 2013.
[36] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors," Applied physics letters, vol. 81, pp. 268-270, 2002.
[37] M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, "Gate dielectric chemical structure? organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors," Journal of the American Chemical Society, vol. 128, pp. 12851-12869, 2006.
[38] Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, et al., "High mobility of pentacene field-effect transistors with polyimide gate dielectric layers," Applied physics letters, vol. 84, pp. 3789-3791, 2004.
[39] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang, and K. Cho, "Effects of the permanent dipoles of self-assembled monolayer-treated insulator surfaces on the field-effect mobility of a pentacene thin-film transistor," Applied physics letters, vol. 90, p. 132104, 2007.
[40] M. Waqas Alam, Z. Wang, S. Naka, and H. Okada, "Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes," Applied Physics Letters, vol. 102, p. 061105, 2013.
[41] J.-Z. W. Cheng-Yu Lu, Hong-Yu Su, Dian Luo, Yun-Lan Chen, Chih-Hao Chang, Hsin-Hua Chang. (2015). Effective electron and hole injection structures in blue inverted organic light-emitting diodes.
[42] X. Cheng, Y. Y. Noh, J. Wang, M. Tello, J. Frisch, R. P. Blum, et al., "Controlling electron and hole charge injection in ambipolar organic field?effect transistors by self?assembled monolayers," Advanced Functional Materials, vol. 19, pp. 2407-2415, 2009.
[43] B. de Boer, A. Hadipour, M. M. Mandoc, T. van Woudenbergh, and P. W. Blom, "Tuning of metal work functions with self?assembled monolayers," Advanced Materials, vol. 17, pp. 621-625, 2005.
[44] A. J. Ben-Sasson and N. Tessler, "Patterned electrode vertical field effect transistor: Theory and experiment," Journal of Applied Physics, vol. 110, p. 044501, 2011.
[45] Y. Preezant and N. Tessler, "Self-consistent analysis of the contact phenomena in low-mobility semiconductors," Journal of Applied Physics, vol. 93, pp. 2059-2064, 2003.
[46] T. Yamamoto and K. Takimiya, "Facile synthesis of highly π-extended heteroarenes, dinaphtho [2, 3-b: 2 ′, 3 ′-f] chalcogenopheno [3, 2-b] chalcogenophenes, and their application to field-effect transistors," Journal of the American Chemical Society, vol. 129, pp. 2224-2225, 2007.
[47] U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, et al., "Flexible low?voltage organic transistors and circuits based on a high?mobility organic semiconductor with good air stability," Advanced Materials, vol. 22, pp. 982-985, 2010.
[48] BL., M. McCarthy, B. Liu, E. Donoghue, I. Kravchenko, D. Kim, et al., "Low-voltage, low-power, organic light-emitting transistors for active matrix displays," Science, vol. 332, pp. 570-573, 2011.
[49] B. O. Acton, G. G. Ting, P. J. Shamberger, F. S. Ohuchi, H. Ma, and A. K.-Y. Jen, "Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide," ACS applied materials & interfaces, vol. 2, pp. 511-520, 2010.
[50] S. P. Tiwari, K. A. Knauer, A. Dindar, and B. Kippelen, "Performance comparison of pentacene organic field-effect transistors with SiO2 modified with octyltrichlorosilane or octadecyltrichlorosilane," Organic Electronics, vol. 13, pp. 18-22, 2012.
[51] D.-K. Kim, M. Lee, B. Kim, and J.-H. Choi, "Low-voltage, high-performance polymeric field-effect transistors based on self-assembled monolayer-passivated HfOx dielectrics: Correlation between trap density, carrier mobility, and operation voltage," Organic Electronics, vol. 74, pp. 135-143, 2019.
[52] K. H. Lam, T. R. B. Foong, J. Zhang, A. C. Grimsdale, and Y. M. Lam, "Carboxylic acid mediated self-assembly of small molecules for organic thin film transistors," Organic Electronics, vol. 15, pp. 1592-1597, 2014.
[53] I. Hill, C. Weinert, L. Kreplak, and B. Van Zyl, "Influence of self-assembled monolayer chain length on modified gate dielectric pentacene thin-film transistors," Applied Physics A, vol. 95, pp. 81-87, 2009.
[54] K. Fukuda, T. Hamamoto, T. Yokota, T. Sekitani, U. Zschieschang, H. Klauk, et al., "Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors," Applied Physics Letters, vol. 95, p. 296, 2009.
[55] C. Yang, Y. Kwack, S. H. Kim, T. K. An, K. Hong, S. Nam, et al., "Ambipolar thin-film transistors and an inverter based on pentacene/self-assembled monolayer modified ZnO hybrid structures for balanced hole and electron mobilities," Organic Electronics, vol. 12, pp. 411-418, 2011.
[56] O. Acton, M. Dubey, T. Weidner, K. M. O′Malley, T. W. Kim, G. G. Ting, et al., "Simultaneous Modification of Bottom?Contact Electrode and Dielectric Surfaces for Organic Thin?Film Transistors Through Single?Component Spin?Cast Monolayers," Advanced Functional Materials, vol. 21, pp. 1476-1488, 2011.
[57] S. Haas, Y. Takahashi, K. Takimiya, and T. Hasegawa, "High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors," Applied Physics Letters, vol. 95, p. 022111, 2009.
[58] 陳宇翔, "低電壓驅動垂直有機電晶體之研究," 碩士, 照明與顯示科技研究所, 國立中央大學, 桃園縣, 2019.
[59] H. Ma, O. Acton, D. O. Hutchins, N. Cernetic, and A. K.-Y. Jen, "Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors," Physical Chemistry Chemical Physics, vol. 14, pp. 14110-14126, 2012.
[60] C. H. Ahn, C. H. Woo, S. Hwang, J. Y. Lee, H. K. Cho, H. J. Cho, et al., "Influence of active layer thickness and annealing in zinc oxide TFT grown by atomic layer deposition," Surface and Interface Analysis, vol. 42, pp. 955-958, 2010. |