博碩士論文 109423055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.50.27
姓名 羅可芸(Ko-Yun Lo)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(How can the AI Experience Enhance Consumer Purchase Intention)
相關論文
★ 網站設計探討—以國內外連鎖飯店集團為例★ 智慧型手機使用者介面與消費者態度之關聯
★ 零售業全通路策略分析 -以Family Mart為例★ 應用服務藍圖及顧客旅程優化汽車租賃業之服務流程: 以某汽車租賃業為例
★ 顧客對折扣促銷的評價-探討商店定價策略、促銷語意線索與折扣深度對消費者認知的影響★ 網路拍賣中外部線索的一致性:在不同的資訊不對稱程度下,起始價格以及賣方聲譽對於拍賣結果影響之探討。
★ 影響金融服務業之多重通路使用者評估通路整合性的因素★ 影響網路口碑行為意圖之因素分析
★ 在多通路環境中,實體通路的存在如何影響顧客決策★ 混合情緒操控與間接體驗產品途徑對消費者之影響-以創新產品為主
★ 服務業不同廣告型式的效果如何受消費者性別及代言人類型而改變★ 消費者於多通路環境下之跨通路搭便車行為之決定因素
★ 如何撰寫較好的網路口碑★ 探討線上環境中互動與故事對廣告效果之影響
★ 不同決策特質與搜尋時間壓力下部落格設計與使用者滿意度之探討★ 主購社群關係與主購經驗分享對網路合購行為因素影響之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-17以後開放)
摘要(中) 如今人工智慧(AI)相關的科技已無所不在,並已改變消費者購物行為,透過消費者使用人工智慧的經驗出發,本研究首先討論消費者使用人工智慧科技是否會透過感知效能去正面影響購物意圖,各個關於人工智慧的經驗的感知效能達到消費者預期,會提升消費者的購物意圖。此外,我們的研究中加入擬人化因素進行探討,研究不同的擬人化程度下,在人工智慧與消費者的經驗中,所感知到的效能是否會影響,並進而去影響購物意圖。這項研究通過消費者與使用人工智慧的經驗與加入擬人化因素為購物意圖以及擬人化研究做出了貢獻。本研究的發現有助於人工智慧製造商優化產品內容,並且鼓勵人工智慧相關廠商與線上零售商合作。
摘要(英) AI-enabled technologies are ubiquitous and have changed consumers’ shopping behavior. Based on consumers’ experience in using AI, this study discusses whether consumers’ use of AI-enable technology positively affects shopping intentions through perceived efficacy. Consumers who perceived the efficacy of each AI experience met their expectations, which will increase purchase intentions. In addition, we add anthropomorphic factors to our research to investigate whether the perceived efficacy of an AI-enabled technology and consumer experience under different degrees of anthropomorphism affects shopping intentions. This research contributes to purchase intention and anthropomorphism research through consumer experience using AI and incorporating anthropomorphic features. The findings of this study can help AI-enabled technology providers optimize product content and encourage AI-enabled manufacturers to collaborate with online retailers.
關鍵字(中) ★ 人工智慧
★ 感知效能
★ 購物意圖
★ 擬人化
關鍵字(英) ★ Artificial intelligence
★ perceived efficacy
★ purchase intention
★ anthropomorphism
論文目次 Table of Contents
List of Figures iv
List of Tables v
Chapter I Introduction 1
Chapter II Conceptual background 4
2-1 Data capture 4
2-2 Classification 5
2-3 Delegation 5
2-4 Social Experience 6
2-5 Linking AI experience, Perceived efficacy, and Purchase intention 7
2-6 Linking AI experience, Anthropomorphism, Perceived efficacy 11
Chapter III Methodology 15
3-1 Study 1 15
3-1-1 Measurement and procedure 15
3-1-2 Result 19
3-1-2-1 Measurement model 19
3-1-2-1 Hypothesis testing 22
3-1-3 Discussion 24
3-2 Study 2 26
3-2-1 Measurement and procedure 26
3-2-2 Result 30
3-3-2-1 Manipulation check 30
3-3-2-2 Measurement model 31
3-3-2-3 Hypothesis Testing 34
3-3-2-4 Anthropomorphism effects on the Purchase Intention model: Multi-Group Analysis 36
3-3-3 Discussion 38
Chapter IV General Discussion 40
Chapter V Limitations and future research directions 42
Appendix A 43
Reference 44


List of Figures
Figure 1. Conceptual framework 14
Figure 2. Multi-group analysis in low-anthropomorphism. 37
Figure 3. Multi-group analysis in high-anthropomorphism. 37


List of Tables
Table 1. Measurement scales 16
Table 2. Demographic characteristics of the participants 18
Table 3. Measurement constructs reliability and validity 20
Table 4. correlation Matrix of Constructs 21
Table 5. Heterotrait ratio of the correlation (HTMT) 21
Table 6. The result of hypotheses testing 22
Table 7. Results of mediation 23
Table 8. Measurement scales 26
Table 9. Demographic characteristics of the participants 30
Table 10. Measurement constructs reliability and validity 31
Table 11. correlation Matrix of Constructs 33
Table 12. Heterotrait ratio of the correlation (HTMT) 33
Table 13. The result of hypotheses testing 34
Table 14. Results of mediation 35
參考文獻 Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their effects on user compliance. Electronic Markets, 31(2), 427-445.
Aggarwal, P., & McGill, A. L. (2007). Is that car smiling at me? Schema congruity as a basis for evaluating anthropomorphized products. Journal of Consumer Research, 34(4), 468-479.
Aguirre, E., Mahr, D., Grewal, D., De Ruyter, K., & Wetzels, M. (2015). Unraveling the personalization paradox: The effect of information collection and trust-building strategies on online advertisement effectiveness. Journal of Retailing, 91(1), 34-49.
Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548.
Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 421-458.
Block, L. G., & Keller, P. A. (1995). When to accentuate the negative: The effects of perceived efficacy and message framing on intentions to perform a health-related behavior. Journal of Marketing Research, 32(2), 192-203.
Borau, S., Otterbring, T., Laporte, S., & Fosso Wamba, S. (2021). The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychology & Marketing, 38(7), 1052-1068.
Cermin, A., Berry, C., Burton, S., & Howlett, E. (2019). The effects of the FTC-mandated disclosure on homeopathic product purchase intentions and efficacy perceptions. Journal of Business Research, 101, 47-58.
Chellappa, R. K., & Sin, R. G. (2005). Personalization versus privacy: An empirical examination of the online consumer’s dilemma. Information Technology and Management, 6(2), 181-202.
Chi, O. H., Jia, S., Li, Y., & Gursoy, D. (2021). Developing a formative scale to measure consumers’ trust toward interaction with artificially intelligent (AI) social robots in service delivery. Computers in Human Behavior, 118, 106700.
Chin, W. W. (1998a). Commentary: Issues and opinion on structural equation modeling. In (pp. vii-xvi): JSTOR.
Chin, W. W. (1998b). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587-595.
Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539-548.
Crolic, C., Thomaz, F., Hadi, R., & Stephen, A. T. (2022). Blame the Bot: Anthropomorphism and Anger in Customer–Chatbot Interactions. Journal of Marketing, 86(1), 132-148.
De Keyser, A., Lemon, K. N., Klaus, P., & Keiningham, T. L. (2015). A framework for understanding and managing the customer experience. Marketing Science Institute working paper series, 85(1), 15-121.
Epley, N., Akalis, S., Waytz, A., & Cacioppo, J. T. (2008). Creating social connection through inferential reproduction: Loneliness and perceived agency in gadgets, gods, and greyhounds. Psychological Science, 19(2), 114-120.
Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychological Review, 114(4), 864.
Fernandes, T., & Oliveira, E. (2021). Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. Journal of Business Research, 122, 180-191.
Fornell, C., & Larcker, D. F. (1981a). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Fornell, C., & Larcker, D. F. (1981b). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18 (3), 328–388.
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304-316.
Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169.
Ha, Q.-A., Chen, J. V., Uy, H. U., & Capistrano, E. P. (2021). Exploring the privacy concerns in using intelligent virtual assistants under perspectives of information sensitivity and anthropomorphism. Journal of Human‐Computer Interaction, 37(6), 512–527.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to
report the results of PLS-SEM. European Business Review, 31(1), 2–24.
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
Hasan, R., Shams, R., & Rahman, M. (2021). Consumer trust and perceived risk for voice-controlled artificial intelligence: The case of Siri. Journal of Business Research, 131, 591-597.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of Interactive Marketing, 51, 57-71.
Hu, P., Lu, Y., & Wang, B. (2022). Experiencing power over AI: The fit effect of perceived power and desire for power on consumers′ choice for voice shopping. Computers in Human Behavior, 128, 107091.
Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155-172.
Jia, H., Wu, M., Jung, E., Shapiro, A., & Sundar, S. S. (2012). Balancing human agency and object agency: an end-user interview study of the internet of things. Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
Keiningham, T., Ball, J., Benoit, S., Bruce, H. L., Buoye, A., Dzenkovska, J., Nasr, L., Ou, Y.-C., & Zaki, M. (2017). The interplay of customer experience and commitment. Journal of Services Marketing , 31 (2), 148–160.
Kim, A., Cho, M., Ahn, J., & Sung, Y. (2019). Effects of gender and relationship type on the response to artificial intelligence. Cyberpsychology, Behavior, and Social Networking, 22(4), 249-253.
Kim, J., & Gambino, A. (2016). Do we trust the crowd or information system? Effects of personalization and bandwagon cues on users′ attitudes and behavioral intentions toward a restaurant recommendation website. Computers in Human Behavior, 65, 369-379.
Kowalczuk, P. (2018). Consumer acceptance of smart speakers: a mixed methods approach. Journal of Research in Interactive Marketing, vol. 12, no. 4, pp. 418–431.
Krafft, M., Kumar, V., Harmeling, C., Singh, S., Zhu, T., Chen, J., Duncan, T., Fortin, W., & Rosa, E. (2021). Insight is power: Understanding the terms of the consumer-firm data exchange. Journal of Retailing, 97(1), 133-149.
Kumar, V., Dixit, A., Javalgi, R. R. G., & Dass, M. (2016). Research framework, strategies, and applications of intelligent agent technologies (IATs) in marketing. Journal of the Academy of Marketing Science, 44(1), 24-45.
Li, C., & Liu, J. (2017). A name alone is not enough: A reexamination of web-based personalization effect. Computers in Human Behavior, 72, 132-139.
Li, X., & Sung, Y. (2021). Anthropomorphism brings us closer: The mediating role of psychological distance in User–AI assistant interactions. Computers in Human Behavior, 118, 106680.
Liang, Y., Lee, S.-H., & Workman, J. E. (2020). Implementation of artificial intelligence in fashion: Are consumers ready? Clothing and Textiles Research Journal, 38(1), 3-18.
Lu, L., Cai, R., & Gursoy, D. (2019). Developing and validating a service robot integration willingness scale. International Journal of Hospitality Management, 80, 36-51.
Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937-947.
Mari A, Mandelli A, Algesheimer R (2020) The evolution of marketing in the context of voice commerce: A managerial perspective. In International Conference on Human-Computer Interaction (pp. 405-425). Springer, Cham.
Martin, K. D., Borah, A., & Palmatier, R. W. (2017). Data privacy: Effects on customer and firm performance. Journal of Marketing, 81(1), 36-58.
Martins, J., Costa, C., Oliveira, T., Gonçalves, R., & Branco, F. (2019). How smartphone advertising influences consumers′ purchase intention. Journal of Business Research, 94, 378-387.
Maslowska, E., Smit, E. G., & Van den Putte, B. (2016). It is all in the name: A study of consumers′ responses to personalized communication. Journal of Interactive Advertising, 16(1), 74-85.
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa… examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28-37.
Montgomery, A. L., & Smith, M. D. (2009). Prospects for Personalization on the Internet. Journal of Interactive Marketing, 23(2), 130-137.
Moore, S., Bulmer, S., & Elms, J. (2022). The social significance of AI in retail on customer experience and shopping practices. Journal of Retailing and Consumer Services, 64, 102755.
Mori, M. (1970). Bukimi no tani [the uncanny valley]. Energy, 7, 33-35.
Mueller, S. T. (2020). Cognitive anthropomorphism of AI: How humans and computers classify images. Ergonomics in Design, 28(3), 12-19.
Nasirian, F., Ahmadian, M., & Lee, O.-K. D. (2017). AI-based voice assistant systems: evaluating from the interaction and trust perspectives, Proceedings of the Twenty-third Americas Conference on Information Systems (AMCIS), Boston.
Olan, F., Suklan, J., Arakpogun, E. O., & Robson, A. (2021). Advancing consumer behavior: the role of artificial intelligence technologies and knowledge sharing. IEEE Transactions on Engineering Management, 1–13.
Pelau, C., Dabija, D.-C., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Computers in Human Behavior, 122, 106855.
Podsakoff, N. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 885(879), 10.1037.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891.
Prosser, D. (2022). Why China’s Laiye Is Buying The French Chatbot Expert Mindsay. https://www.forbes.com/sites/davidprosser/2022/04/14/why-chinas-laiye-is-buying-the-french-chatbot-expert-mindsay/?sh=4acdad60294b
Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131-151.
Reeves, B., & Nass, C. (1996). The media equation: How people treat computers, television, and new media like real people. Cambridge, UK, 10, 236605.
Rhim, J., Kwak, M., Gong, Y., & Gweon, G. (2022). Application of humanization to survey chatbots: Change in chatbot perception, interaction experience, and survey data quality. Computers in Human Behavior, 126, 107034.
Rodgers, W., Yeung, F., Odindo, C., & Degbey, W. Y. (2021). Artificial intelligence-driven music biometrics influencing customers’ retail buying behavior. Journal of Business Research, 126, 401-414.
Rodriguez-Lizundia, E., Marcos, S., Zalama, E., Gómez-García-Bermejo, J., & Gordaliza, A. (2015). A bellboy robot: Study of the effects of robot behaviour on user engagement and comfort. International Journal of Human-Computer Studies, 82, 83-95.
Rosenthal-Von Der Pütten, A. M., & Krämer, N. C. (2014). How design characteristics of robots determine evaluation and uncanny valley related responses. Computers in Human Behavior, 36, 422-439.
Roy, R., & Naidoo, V. (2021). Enhancing chatbot effectiveness: The role of anthropomorphic conversational styles and time orientation. Journal of Business Research, 126, 23-34.
Sahni, N. S., Wheeler, S. C., & Chintagunta, P. (2018). Personalization in email marketing: The role of noninformative advertising content. Marketing Science, 37(2), 236-258.
Schreiner, T., Rese, A., & Baier, D. (2019). Multichannel personalization: Identifying consumer preferences for product recommendations in advertisements across different media channels. Journal of Retailing and Consumer Services, 48, 87-99.
Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14-24.
Smink, A. R., van Reijmersdal, E. A., van Noort, G., & Neijens, P. C. (2020). Shopping in augmented reality: The effects of spatial presence, personalization and intrusiveness on app and brand responses. Journal of Business Research, 118, 474-485.
Sun, C., Shi, Z. J., Liu, X., Ghose, A., Li, X., & Xiong, F. (2019). The effect of voice ai on consumer purchase and search behavior. NYU Stern School of Business.
Sung, E. C., Bae, S., Han, D.-I. D., & Kwon, O. (2021). Consumer engagement via interactive artificial intelligence and mixed reality. International Journal of Information Management, 60, 102382.
Swani, K., Milne, G. R., & Slepchuk, A. N. (2021). Revisiting Trust and Privacy Concern in Consumers′ Perceptions of Marketing Information Management Practices: Replication and Extension. Journal of Interactive Marketing, 56, 137-158.
Vimalkumar, M., Sharma, S. K., Singh, J. B., & Dwivedi, Y. K. (2021). ‘Okay google, what about my privacy?’: User′s privacy perceptions and acceptance of voice based digital assistants. Computers in Human Behavior, 120, 106763.
Waytz, A., Heafner, J., & Epley, N. (2014). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117.
Xiao, B., & Benbasat, I. (2007). E-commerce product recommendation agents: Use, characteristics, and impact. MIS Quarterly, 137-209.
Xie, Y., Chen, K., & Guo, X. (2020). Online anthropomorphism and consumers’ privacy concern: Moderating roles of need for interaction and social exclusion. Journal of Retailing and Consumer Services, 55, 102119.
Yuen, M. (2022). Chatbot market in 2022: Stats, trends, and companies in the growing AI chatbot industry. https://www.businessinsider.com/chatbot-market-stats-trends
Zeng, F., Ye, Q., Li, J., & Yang, Z. (2021). Does self-disclosure matter? A dynamic two-stage perspective for the personalization-privacy paradox. Journal of Business Research, 124, 667-675.
Zhao, X., Lynch Jr, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37(2), 197-206.
Zhao, Y., Ham, J., & Vlist, J. V. D. (2017, December). Persuasive virtual touch: The effect of artificial social touch on shopping behavior in virtual reality. In International workshop on symbiotic interaction (pp. 98-109). Springer, Cham.
指導教授 謝依靜(Yi-Ching Hsieh) 審核日期 2022-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明