博碩士論文 109423026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.116.36.48
姓名 許芮萍(Jui-Ping Hsu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 探討應用不同股市技術圖形和不同深度學習技術對股價預測之影響
(Using Multiple Graph-based Deep Learning Frameworks for Stock Chart Patterns Recognition to Predict Stock Trend)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-1以後開放)
摘要(中) 股票市場的熱絡程度可以代表一個國家經濟的興衰,股價反映的通常都是公司本身的產業前景,股價預測向來都是非常熱門且具挑戰性的研究議題,但由於金融市場的波動容易受到許多外在因素影響,而導致其難以被準確的預測。在深度學習技術發展下,有愈來愈多研究將資訊技術運用於股價預測中,但目前現有的研究都只分析結構化股價資訊,鮮少有針對二維圖像進行分析的研究,也較少針對不同的深度學習技術運用在股價預測上之表現進行比較;因此在本研究中,會將公司的歷史股價資訊轉換成圖像資料,探討在股價預測上運用股市技術圖形,是否會比結構化資料有更卓越的表現。並進一步搭配多種不同的技術指標,探討增加技術圖形中資訊的豐富度和複雜度,是否有助於模型在股市技術圖特徵上的學習。在深度學習模型選擇上,則運用深度學習中之卷積神經網路技術(2D-CNN、VGG16)。此外,混合式深度學習模型和集成式學習在過去許多研究中都已被證實比單一深度學習模型表現來得卓越,但卻沒有研究將混合式深度學習模型運用於股價預測上;因此,本研究將針對混合式深度學習模型(2DCNN-LSTM和VGG16-LSTM)進行探討,比較混合式模型在股價預測上是否能創造出比單一模型更好的表現。
從本研究之實驗結果顯示,運用非結構化圖像資料作為輸入資料,比過去研究運用一維時間序列型資料有更好的預測表現。此外,在實驗中亦證實,增加股市技術圖形資訊量的豐富度,有助於模型在特徵上的學習,提升在股價預測的表現。然而在模型的比較上, 儘管VGG16-LSTM在多數的實驗AUC結果都比VGG16突出,但統計檢定結果顯示此兩種技術之間並無顯著差;而在運算時間上,VGG16-LSTM所花費的時間成本相較於VGG16來得高出不少。因此,若考量到時間成本,在股價預測上選擇單一的深度學習模型,便可得到不錯的效果。
摘要(英) Stock prediction is one of the most challenging tasks for investors and researchers because the stock market is extremely unstable and volatile due to several factors such as economic, politics, investor sentiment, and more. In the last decade, deep learning techniques start getting more attention, and recent studies have attempted to apply these algorithms to build a model for stock prediction, but most of the studies are focus on using structured data (numerical data), instead of unstructured data (image data). Therefore, in order to understand whether the graph-based technical indicators are the better input data type than traditional structured one, we converted the numerical stock data into stock charts, and combine it with some commonly used technical indicators. In this work, we utilize two CNN-based models to extract features from stock charts. Moreover, we employ one ensemble learning and two hybrid deep learning frameworks, stacking ensemble, VGG16-LSTM, and 2DCNN-LSTM, for performance comparison with the single models.
The results indicate that using the stock charts as the input data for the deep learning models has better performance than numerical data on stock prediction. We also found that the more stock information added to the stock charts, the better performance we can get. Although VGG16-LSTM gets a higher AUC rate than VGG16, the independent sample T-test showed that there is no significant difference between VGG16 and VGG16-LSTM. We dig deeper into the computation time, and we found that VGG16-LSTM takes more training time than VGG16. Therefore, considering the time costs, there is no need to choose VGG16-LSTM in this work.
關鍵字(中) ★ 股市預測
★ 深度學習
★ 圖像分類
★ 集成式學習
★ 卷積神經網路
關鍵字(英) ★ Stock Prediction
★ Deep Learning
★ Image Classification
★ Ensemble Learning
★ Convolutional Neural Network
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 7
1.4 研究架構 9
第二章 文獻探討 10
2.1 技術分析(Technical Indicator) 10
2.1.1 隨機指標(Stochastic Oscillator, KD) 11
2.1.2 指數平滑異同移動平均線(MACD) 13
2.1.3 相對強弱指數(Relative Strength Index, RSI) 14
2.1.4 K線圖(Candlestick Chart) 14
2.2 深度學習(Deep Learning) 17
2.2.1 卷積神經網路(Convolutional Neural Network, CNN) 18
2.2.2 長短期記憶(Long Short-Term Memory, LSTM) 22
2.2.3 轉移學習(Transfer Learning) 24
2.3 運用深度學習進行股市預測之相關研究 27
第三章 研究方法與實驗設計 33
3.1 實驗一架構(Study 1) 34
3.1.1 實驗準備(Experiment Preparation) 34
3.1.2 實驗資料集(Dataset) 35
3.1.3 資料集切分(Data Partition) 42
3.1.4 資料前處理(Data Preprocessing) 43
3.1.5 模型選擇與超參數設定(Models and Hyperparameters) 47
3.1.6 衡量指標(Evaluation Metrics) 51
3.2 實驗二架構(Study 2) 53
第四章 實驗結果 56
4.1 實驗一 56
4.1.1 實驗一結果 56
4.1.2 實驗一小結 65
4.2 實驗二 66
4.2.1 實驗二結果 66
4.2.2 實驗二小結 68
第五章 結論 71
5.1 總結與貢獻 71
5.2 未來研究方向與建議 72
參考文獻 74
參考文獻 Abarbanell, J. S. and B. J. Bushee (1997). "Fundamental analysis, future earnings, and stock prices." Journal of accounting research 35(1): 1-24.
Abdel-Hamid, O., et al. (2014). "Convolutional neural networks for speech recognition." IEEE/ACM Transactions on audio, speech, and language processing 22(10): 1533-1545.
Achelis, S. B. (2001). Technical Analysis from A to Z, McGraw Hill New York.
Adebiyi, A. A., et al. (2012). "Stock price prediction using neural network with hybridized market indicators." Journal of Emerging Trends in Computing and Information Sciences 3(1).
Akiba, T., et al. (2019). Optuna: A next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining.
Alam, M., et al. (2020). "Survey on deep neural networks in speech and vision systems." Neurocomputing 417: 302-321.
Ampomah, E. K., et al. (2020). "Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement." Information 11(6): 332.
Ananthi, M. and K. Vijayakumar (2021). "Stock market analysis using candlestick regression and market trend prediction (CKRM)." Journal of Ambient Intelligence and Humanized Computing 12(5): 4819-4826.
Ariyo, A. A., et al. (2014). Stock price prediction using the ARIMA model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, IEEE.
Atsalakis, G. S. and K. P. Valavanis (2009). "Surveying stock market forecasting techniques–Part II: Soft computing methods." Expert Systems with Applications 36(3): 5932-5941.
Baek, Y. and H. Y. Kim (2018). "ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module." Expert Systems with Applications 113: 457-480.
Baker, S. R., et al. (2020). "The unprecedented stock market reaction to COVID-19." The review of asset pricing studies 10(4): 742-758.
Bao, W., et al. (2017). "A deep learning framework for financial time series using stacked autoencoders and long-short term memory." PloS one 12(7): e0180944.
Batres-Estrada, B. (2015). Deep learning for multivariate financial time series.
Bisoi, R., et al. (2019). "Hybrid variational mode decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis." Applied Soft Computing 74: 652-678.
Board, A. (2005). Stochastic modelling and applied probability, Springer.
Box, G. E., et al. (2015). Time series analysis: forecasting and control, John Wiley & Sons.
Cavalcante, R. C., et al. (2016). "Computational intelligence and financial markets: A survey and future directions." Expert Systems with Applications 55: 194-211.
Chen, J.-F., et al. (2016). Financial time-series data analysis using deep convolutional neural networks. 2016 7th International conference on cloud computing and big data (CCBD), IEEE.
Chen, S. and H. He (2018). Stock prediction using convolutional neural network. IOP Conference series: materials science and engineering, IOP Publishing.
Chen, T.-l. and F.-y. Chen (2016). "An intelligent pattern recognition model for supporting investment decisions in stock market." Information Sciences 346: 261-274.
Chen, W., et al. (2021). "A novel graph convolutional feature based convolutional neural network for stock trend prediction." Information Sciences 556: 67-94.
Chong, T. T.-L., et al. (2014). "Revisiting the Performance of MACD and RSI Oscillators." Journal of risk and financial management 7(1): 1-12.
Cooper, N. G. (2004). Spotlight on Facts and Myths of Misunderstood Stochastics, SFO: Stocks, Futures and Options, Nov.
Cootner, P. H. and A. W. C. LO (1964). The Random Character of Stock Market Prices, M.I.T. Press.
De Gooijer, J. G. and R. J. Hyndman (2006). "25 years of time series forecasting." International journal of forecasting 22(3): 443-473.
Ding, X., et al. (2015). Deep learning for event-driven stock prediction. Twenty-fourth international joint conference on artificial intelligence.
Dingli, A. and K. S. Fournier (2017). "Financial time series forecasting–a deep learning approach." International Journal of Machine Learning and Computing 7(5): 118-122.
do Prado, H. A., et al. (2013). "On the effectiveness of candlestick chart analysis for the Brazilian stock market." Procedia Computer Science 22: 1136-1145.
Fama, E. F. (1995). "Random walks in stock market prices." Financial analysts journal 51(1): 75-80.
Fama, E. F. (2021). "Efficient capital markets a review of theory and empirical work." The Fama Portfolio: 76-121.
Fischer, T. and C. Krauss (2018). "Deep learning with long short-term memory networks for financial market predictions." European Journal of Operational Research 270(2): 654-669.
Fister, D., et al. (2019). "Deep learning for stock market trading: a superior trading strategy?" Neural Network World 29(3): 151-171.
Franc, V. and J. Čech (2018). "Learning CNNs from weakly annotated facial images." Image and Vision Computing 77: 10-20.
Goodell, J. W. (2020). "COVID-19 and finance: Agendas for future research." Finance Research Letters 35: 101512.
Gu, Y., et al. (2020). "Prediction of Stock Performance Using Deep Neural Networks." Applied Sciences 10(22): 8142.
Haenlein, M. and A. Kaplan (2019). "A brief history of artificial intelligence: On the past, present, and future of artificial intelligence." California management review 61(4): 5-14.
He, H. and W. Liu (2020). "Financial Market Sequence Prediction Based on Image Processing." IEEE Access.
Hinton, G. E. and R. R. Salakhutdinov (2006). "Reducing the dimensionality of data with neural networks." science 313(5786): 504-507.
Hoseinzade, E. and S. Haratizadeh (2019). "CNNpred: CNN-based stock market prediction using a diverse set of variables." Expert Systems with Applications 129: 273-285.
Hu, Y., et al. (2018). "Weakly-supervised convolutional neural networks for multimodal image registration." Medical image analysis 49: 1-13.
Hu, Z., et al. (2021). "A survey of forex and stock price prediction using deep learning." Applied System Innovation 4(1): 9.
Hussain, M., et al. (2018). A study on cnn transfer learning for image classification. UK Workshop on computational Intelligence, Springer.
Ioffe, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, PMLR.
Islam, M. Z. and A. Asraf (2020). "A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images." Informatics in medicine unlocked 20: 100412.
Jiang, M., et al. (2020). "An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms." Physica A: Statistical Mechanics and its Applications 541: 122272.
Jin, G. and O. Kwon (2021). "Impact of chart image characteristics on stock price prediction with a convolutional neural network." PloS one 16(6): e0253121.
Ju, C., et al. (2018). "The relative performance of ensemble methods with deep convolutional neural networks for image classification." Journal of Applied Statistics 45(15): 2800-2818.
Khanna, R., et al. (2019). "Through-wall remote human voice recognition using doppler radar with transfer learning." IEEE Sensors Journal 19(12): 4571-4576.
Kim, H. Y. and C. H. Won (2018). "Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models." Expert Systems with Applications 103: 25-37.
Kingma, D. P. and J. Ba (2014). "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980.
Krizhevsky, A. (2012). "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems 25.
Lahmiri, S. and S. Bekiros (2019). "Cryptocurrency forecasting with deep learning chaotic neural networks." Chaos, Solitons & Fractals 118: 35-40.
Lane, G. C. (1984). "Lane′s stochastics." Technical Analysis of Stocks and Commodities 2(3): 80.
Lane, G. C. (1985). "Lane’s stochastics: the ultimate oscillator." Journal of Technical Analysis 21: 37-42.
LeBaron, B., et al. (1999). "Time series properties of an artificial stock market." Journal of Economic Dynamics and control 23(9-10): 1487-1516.
LeCun, Y., et al. (1998). "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86(11): 2278-2324.
Liu, S., et al. (2017). CNN-LSTM neural network model for quantitative strategy analysis in stock markets. international conference on neural information processing, Springer.
Livieris, I. E., et al. (2020). "A CNN–LSTM model for gold price time-series forecasting." Neural Computing and Applications 32(23): 17351-17360.
Lo, A. W., et al. (2000). "Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation." The journal of finance 55(4): 1705-1765.
Lu, T.-H., et al. (2012). "Profitable candlestick trading strategies—The evidence from a new perspective." Review of Financial Economics 21(2): 63-68.
Lu, W., et al. (2020). "A CNN-LSTM-based model to forecast stock prices." Complexity 2020.
Malkiel, B. G. (1973). A random walk down Wall Street. New York, Norton.
Masana, M., et al. (2020). "Class-incremental learning: survey and performance evaluation on image classification." arXiv preprint arXiv:2010.15277.
Mehtab, S. and J. Sen (2020). Stock price prediction using CNN and LSTM-based deep learning models. 2020 International Conference on Decision Aid Sciences and Application (DASA), IEEE.
Murphy, J. J. (1999). Technical analysis of the financial markets: A comprehensive guide to trading methods and applications, Penguin.
Nabipour, M., et al. (2020). "Deep learning for stock market prediction." Entropy 22(8): 840.
Nelson, D. M. Q., et al. (2017). Stock market′s price movement prediction with LSTM neural networks, IEEE.
Nikou, M., et al. (2019). "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms." Intelligent Systems in Accounting, Finance and Management 26(4): 164-174.
Nison, S. (2001). Japanese candlestick charting techniques: a contemporary guide to the ancient investment techniques of the Far East, Penguin.
Nti, I. K., et al. (2020). "Efficient stock-market prediction using ensemble support vector machine." Open Computer Science 10(1): 153-163.
Nti, I. K., et al. (2021). "A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction." Journal of Big Data 8(1): 1-28.
Ozbayoglu, A. M., et al. (2020). "Deep learning for financial applications: A survey." Applied Soft Computing 93: 106384.
Pan, S. J. and Q. Yang (2009). "A survey on transfer learning." IEEE Transactions on knowledge and data engineering 22(10): 1345-1359.
Pang, X. W., et al. (2018). Stock Market Prediction based on Deep Long Short Term Memory Neural Network. COMPLEXIS.
Pavlyshenko, B. (2018). Using stacking approaches for machine learning models. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), IEEE.
Person, J. L. (2012). A complete guide to technical trading tactics: how to profit using pivot points, candlesticks & other indicators, John Wiley & Sons.
Picasso, A., et al. (2019). "Technical analysis and sentiment embeddings for market trend prediction." Expert Systems with Applications 135: 60-70.
Ramlall, I. (2016). Stochastic Oscillator. Applied Technical Analysis for Advanced Learners and Practitioners, Emerald Group Publishing Limited: 55-60.
Ravi, V., et al. (2021). "Deep learning-based meta-classifier approach for COVID-19 classification using CT scan and chest X-ray images." Multimedia Systems: 1-15.
Rojas, I., et al. (2008). "Soft-computing techniques and ARMA model for time series prediction." Neurocomputing 71(4-6): 519-537.
Sagi, O. and L. Rokach (2018). "Ensemble learning: A survey." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 8(4): e1249.
Seydel, R. and R. Seydel (2006). Tools for computational finance, Springer.
Sezer, O. B. and A. M. Ozbayoglu (2018). "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach." Applied Soft Computing 70: 525-538.
Sim, H. S., et al. (2019). "Is deep learning for image recognition applicable to stock market prediction?" Complexity 2019.
Singh, R. and S. Srivastava (2017). "Stock prediction using deep learning." Multimedia Tools and Applications 76(18): 18569-18584.
Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, PMLR.
Taigman, Y., et al. (2014). Deepface: Closing the gap to human-level performance in face verification. Proceedings of the IEEE conference on computer vision and pattern recognition.
Tan, C. (2018). A survey on deep transfer learning. International conference on artificial neural networks, Springer.
Tang, J., et al. (2019). "Crash injury severity analysis using a two-layer Stacking framework." Accident Analysis & Prevention 122: 226-238.
Taylor, M. P. and H. Allen (1992). "The use of technical analysis in the foreign exchange market." Journal of international Money and Finance 11(3): 304-314.
Van der Laan, M. J., et al. (2007). "Super learner." Statistical applications in genetics and molecular biology 6(1).
Wahyuningrum, R. T., et al. (2019). A new approach to classify knee osteoarthritis severity from radiographic images based on CNN-LSTM method. 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), IEEE.
Wang, F., et al. (2009). "Statistical analysis of the overnight and daytime return." Physical Review E 79(5): 056109.
Wang, Z., et al. (2018). "A novel ensemble learning approach to support building energy use prediction." Energy and Buildings 159: 109-122.
Weiss, K. (2016). "A survey of transfer learning." Journal of Big Data 3(1): 1-40.
Wilder, J. W. (1978). New concepts in technical trading systems. Greensboro (N.C.), Trend research.
Wolpert, D. H. (1992). "Stacked generalization." Neural networks 5(2): 241-259.
Wong, W.-K., et al. (2003). "How rewarding is technical analysis? Evidence from Singapore stock market." Applied Financial Economics 13(7): 543-551.
Wu, J. M.-T., et al. (2021). "A graph-based CNN-LSTM stock price prediction algorithm with leading indicators." Multimedia Systems: 1-20.
Xu, Y. (2020). "Stock Movement Prediction with Deep Learning, Finance Tweets Sentiment, Technical Indicators, and Candlestick Charting."
Yu, P. and X. Yan (2020). "Stock price prediction based on deep neural networks." Neural Computing and Applications 32(6): 1609-1628.
Zeiler, M. D. (2012). "Adadelta: an adaptive learning rate method." arXiv preprint arXiv:1212.5701.
Zhao, J., et al. (2021). "Prediction model for stock price trend based on recurrent neural network." Journal of Ambient Intelligence and Humanized Computing 12: 745-753.
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2022-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明