博碩士論文 109423030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.216.188
姓名 吳東翰(Tung-Han Wu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 你Pay嗎?新冠肺炎對行動支付使用行為之影響因素研究
(A Study on the Effects of COVID Pandemic on Mobile Payment Behavior)
相關論文
★ 製藥業的成本會計評估研究─ 一個ABC成本制度的應用★ 一個保險業的資料採擷應用--業務員的薪酬制度分析
★ 農漁產品電子化交易中分類分級管理之研究★ 應用類神經網路建構壽險核保決策支援之研究
★ 企業導入ERP之關鍵成功因素-個案研究★ 體外診斷醫療器材滿足CE及GMP驗證要求之個案研
★ 企業資訊系統委外研究-以個案銀行為例★ DRAM月平均價格變動分析
★ 定期航運產業運價及運送時間對經營績效影響之研究-以某外商海運公司在台灣經營為例★ 以交通儲值卡作為電子支付工具的營運模式及可行性分析
★ 軟體公司能力成熟度評估★ 加速台灣海關的通關便捷化-提升行動化服務的解決方案
★ 以均勻度係數為預測晶圓良率指標之可行性分析-以國內某DRAM廠為例★ 某公司資訊部門變革失敗之探討
★ 資訊部門導入ITIL 管理機制之現況分析─ 以企業導入ITIL 服務支援為例★ 導入WCO SAFE 優質企業之可行性分析–以A航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,世界各地都飽受新冠肺炎的影響,各個產業都遭受到強烈的衝擊,但行動支付產業卻逆勢成長;根據資料顯示,台灣在受到新冠肺炎影響的兩年內,行動支付的使用人數足足成長了883萬人,佔台灣總人口數的四成;另外,疫情期間消費者使用行動支付的頻率發生巨大的變化;這些都表明,疫情已經悄悄改變了台灣消費者對行動支付的態度。
  面對這些現象,本研究試圖探討新冠肺炎疫情影響下,影響消費者行動支付使用行為之因素。本研究以計畫行為理論 (Theory of Planned Behavior, TPB) 作為發展的基礎,並採用問卷調查法,透過網路問卷收集研究數據。最終,本研究總共回收2,482份有效樣本,並以結構方程模型 (Structural Equation Modeling, SEM) 統計方法作為主要的分析工具。
  本研究結果證實,感知疫情嚴重性對行動支付的態度具有正向影響;態度、促進條件和感知安全性會正向影響行動支付的使用意圖;使用意圖、同儕壓力、促進條件和感知安全性對行動支付的使用行為具有正向影響;信任則會調節感知安全性對使用意圖的影響。
摘要(英) In recent years, countries all over the world have been affected by the COVID-19 pandemic. While various industries suffered, the mobile payment industry has grown against the odds. Statistics in Taiwan reveal that during the two years of the pandemic, the number of mobile payment users has grown by 8.83 million, accounting for roughly 40% of its population. In addition, the frequency of consumers’ usage of mobile payment has changed dramatically during the pandemic. These show that the pandemic has quietly changed the consumer attitudes towards mobile payment in Taiwan.
  In the face of these phenomena, this study attempts to explore the factors affecting consumers’ behavior of mobile payment usage under the pandemic. The theory of planned behavior is employed as the foundation on which extensions are made. This study adopts the questionnaire survey method, and collected data through online questionnaires. A total of 2,482 valid samples were tallied, and the Structural Equation Modeling (SEM) statistical method was used as the major tool for analysis.
  Results confirm that the perceived severity of COVID-19 has a positive impact on attitudes towards mobile payment; attitudes and facilitating conditions and perceived security positively affect the use intention of mobile payment; use intention, peer pressure, and facilitation conditions and perceived safety positively affects usage behavior of mobile payments; trust interferes the impact of perceived security on use intention.
關鍵字(中) ★ 行動支付
★ 計畫行為理論
★ 感知疫情嚴重性
★ 同儕壓力
★ 信任
★ 使用行為
關鍵字(英) ★ Mobile Payment
★ Theory of Planned Behavior
★ Perceived Severity of COVID-19
★ Peer Pressure
★ Trust
★ Use Behavior
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機:新冠肺炎下行動支付成長的「因素」 6
1-3 研究目的 9
第二章 文獻探討 10
2-1 行動支付 10
2-2 計畫行為理論 12
2-3 同儕壓力 14
2-4 感知安全性 15
2-5 績效預期 16
2-6 感知疫情嚴重性 17
2-7 信任 18
2-8 小結 19
第三章 研究方法 20
3-1 研究架構與假說 20
3-2 研究設計 25
3-3 變數操作型定義 26
3-4 資料分析方法與工具 33
第四章 資料分析 34
4-1 敘述性統計分析 34
4-2 測量模型檢驗 39
4-3 結構模型檢驗 44
4-4 小結 51
4-5 事後分析 53
第五章 結論與未來建議 55
5-1 研究結果 55
5-2 學術意涵 57
5-3 管理意涵 58
5-4 研究限制與未來建議 59
參考文獻 61
附錄 73
參考文獻 英文文獻
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. (Theories of Cognitive Self-Regulation)
Ajzen, I. (2006). Constructing a theory of planned behavior questionnaire. Amherst, MA. Retrieved 2022, March 6 from https://people.umass.edu/aizen/pdf/tpb.measurement.pdf
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Prentice-Hall Inc.
Alaeddin, O., Rana, A., Zainudin, Z., & Kamarudin, F. (2018). From physical to digital: Investigating consumer behaviour of switching to mobile wallet. Polish Journal of Management Studies, 17(2), 18-30.
Ang, T., Wei, S., & Arli, D. (2021). Social distancing behavior during COVID-19: a TPB perspective. Marketing Intelligence & Planning, 39(6), 809-824.
Ashrafi, M. Z., & Ng, S. K. (2008). Enabling privacy-preserving e-payment processing. International Conference on Database Systems for Advanced Applications, 596-603.
Aslam, W., Ham, M., & Arif, I. (2017). Consumer behavioral intentions towards mobile payment services: An empirical analysis in Pakistan. Trziste Market, 29(2), 161-176.
Bailey, A. A., Pentina, I., Mishra, A. S., & Mimoun, M. S. B. (2017). Mobile payments adoption by US consumers: an extended TAM. International Journal of Retail & Distribution Management, 45(6), 626-640.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122.
Bandura, A., Freeman, W. H., & Lightsey, R. (1999). Self-Efficacy: The Exercise of Control. J Cogn Psychother(2), 158-166.
Bank for International Settlements. (2012). Innovations in retail payments. Bank for International Settlements,. Retrieved 2022, March 30 from https://www.bis.org/cpmi/publ/d102.pdf
Beaudoin, P., & Lachance, M. J. (2006). Determinants of Adolescents′ Brand Sensitivity to Clothing. Family and Consumer Sciences Research Journal, 34(4), 312-331.
Becker, M. H. (1974). The health belief model and personal health behavior. Health Education Monographs, 2, 324-473.
Becker, M. H., & Maiman, L. A. (1980). Strategies for enhancing patient compliance. Journal of Community Health, 6(2), 113-135.
Bentler, P. M. (1982). Confirmatory factor analysis via noniterative estimation: A fast, inexpensive method. Journal of Marketing Research, 19(4), 417-424.
Bentler, P. M. (1995). EQS Structural Equations Program Manual (Vol. 6). Multivariate Software Encino, CA.
Berk, L. E. (1997). Child Development. Allyn & Bacon.
Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of Management Information Systems, 19(1), 211-241.
Brown, B. B., Clasen, D. R., & Eicher, S. A. (1986). Perceptions of peer pressure, peer conformity dispositions, and self-reported behavior among adolescents. Developmental Psychology, 22(4), 521.
Buhrmester, D. (1990). Intimacy of friendship, interpersonal competence, and adjustment during preadolescence and adolescence. Child Development, 61(4), 1101-1111.
Champion, V. L. (1984). Instrument development for health belief model constructs. Advances in Nursing Science, 6(3), 73-85.
Champion, V. L., & Skinner, C. S. (2008). The health belief model. Health Behavior and Health Education: Theory, Research, and Practice, 4, 45-65.
Cialdini, R. B., Kallgren, C. A., & Reno, R. R. (1991). A focus theory of normative conduct: A theoretical refinement and reevaluation of the role of norms in human behavior. In Advances in Experimental Social Psychology (Vol. 24, pp. 201-234). Elsevier.
Cialdini, R. B., Reno, R. R., & Kallgren, C. A. (1990). A focus theory of normative conduct: Recycling the concept of norms to reduce littering in public places. Journal of Personality and Social Psychology, 58(6), 1015.
Contreras, J. M., & Kerns, K. A. (2000). Emotion regulation processes: Explaining links between parent-child attachment and peer relationships. In Family and peers: Linking two social worlds. (pp. 1-25). Praeger Publishers/Greenwood Publishing Group.
Coppola, N. W., Hiltz, S. R., & Rotter, N. G. (2004). Building trust in virtual teams. IEEE Transactions on Professional Communication, 47(2), 95-104.
Cruz, M., e Silva, S. C., & Machado, J. C. (2017). The influence of WOM and Peer Interaction in the Decision-Making Process of Generation Z within the family. International Journal of Marketing, Communication and New Media(2).
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Di Pietro, L., Mugion, R. G., Mattia, G., Renzi, M., & Toni, M. (2015). The integrated model on mobile payment acceptance (IMMPA): an empirical application to public transport. Transportation Research Part C: Emerging Technologies, 56, 463-479.
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61-80.
Dumas, T. M., Ellis, W. E., & Wolfe, D. A. (2012). Identity development as a buffer of adolescent risk behaviors in the context of peer group pressure and control. Journal of Adolescence, 35(4), 917-927.
Durkin, K. (1995). Developmental Social Psychology: From Infancy to Old Age. Blackwell Publishing.
Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., & Clement, M. (2017). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211-230.
Fan, J., Shao, M., Li, Y., & Huang, X. (2018). Understanding users’ attitude toward mobile payment use: A comparative study between China and the USA. Industrial Management & Data Systems, 118(3), 524-540.
Fed. (2022). How long is the lifespan of U.S. paper money? Federal Reserve System, Fed. Retrieved 2022, April 5 from https://www.federalreserve.gov/faqs/how-long-is-the-life-span-of-us-paper-money.htm
Fishbein, M. (2000). The role of theory in HIV prevention. AIDS Care, 12(3), 273-278.
Fornell, C. (1983). Issues in the application of covariance structure analysis: A comment. Journal of Consumer Research, 9(4), 443-448.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
Fukuyama, F. (1995). Social capital and the global economy. Foreign Aff, 74, 89.
Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704-1723.
Gedik, H., Voss, T. A., & Voss, A. (2013). Money and transmission of bacteria. Antimicrobial Resistance and Infection Control, 2(1), 1-4.
Gil, L. A., Dwivedi, A., & Johnson, L. W. (2017). Effect of popularity and peer pressure on attitudes toward luxury among teens. Young Consumers, 18(1), 84-93.
Google News. (2022). Covid-19. Google. Retrieved 2022, March 23 from https://news.google.com/covid19/map?hl=zh-TW&mid=%2Fm%2F06f32&gl=TW&ceid=TW%3Azh-Hant
Grassie, K. (2007). Easy handling and security make NFC a success. Card Technology Today, 19(10), 12-13.
Griskevicius, V., Cialdini, R. B., & Goldstein, N. J. (2008). Applying (and resisting) peer influence. MIT Sloan Management Review, 49(2), 84.
Hair, Anderson, Tatham, & Black. (1998). Multivariate Data Analysis, 5th ed (Vol. 730). Prentice Hall International.
Halebsky, M. A. (1987). Adolescent alcohol and substance abuse: Parent and peer effects. Adolescence, 22(88), 961.
Hartono, E., Holsapple, C. W., Kim, K.-Y., Na, K.-S., & Simpson, J. T. (2014). Measuring perceived security in B2C electronic commerce website usage: A respecification and validation. Decision Support Systems, 62, 11-21.
Hoffman, D. L., Novak, T. P., & Peralta, M. A. (1999). Information privacy in the marketspace: Implications for the commercial uses of anonymity on the Web. The Information Society, 15(2), 129-139.
Hossain, M. S., & Zhou, X. (2018). Impact of m-payments on purchase intention and customer satisfaction: perceived flow as mediator. International Journal of Science and Business, 2(3), 503-517.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: a Multidisciplinary Journal, 6(1), 1-55.
Husted, B. W. (1989). Trust in business relations: Directions for empirical research. Business & Professional Ethics Journal, 23-40.
Jagannathan, M. (2020). World Health Organization: ‘We did NOT say that cash was transmitting coronavirus. MarketWatch. Retrieved 2022, April 5 from https://www.marketwatch.com/story/who-we-did-not-say-that-cash-was-transmitting-coronavirus-2020-03-06
Jarvenpaa, S. L., Knoll, K., & Leidner, D. E. (1998). Is anybody out there? Antecedents of trust in global virtual teams. Journal of Management Information Systems, 14(4),
29-64.
Johnson-George, C., & Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. Journal of Personality and Social Psychology, 43(6), 1306.
Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111-122.
Kaplan, D. (1990). Evaluating and modifying covariance structure models: A review and recommendation. Multivariate Behavioral Research, 25(2), 137-155.
Kaushik, V. (2020). Getting the Monkey Off Your Back: Teen Perceptions of Substance Abuse among their Peers in Delhi. Journal of Psychosocial Research, 15(2).
Keyes, D. (2020). South Korea is quarantining and burning cash to prevent spreading the coronavirus. Business Insider. Retrieved 2022, April 5 from https://www.businessinsider.com/south-korea-burning-cash-amid-coronavirus-outbreak-2020-3?r=DE&IR=T
Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.
KPMG. (2022). Pulse of Fintech H2 2021 – Global. Klynveld Peat Marwick Goerdeler. Retrieved 2022, March 20 from https://home.kpmg/xx/en/home/insights/2022/01/pulse-of-fintech-h2-2021-global.html
Lee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141.
Lewis, J. D., & Weigert, A. (1985). Trust as a social reality. Social Forces, 63(4), 967-985.
Liébana-Cabanillas, F., Marinkovic, V., de Luna, I. R., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130.
Logie, C. H., & Turan, J. M. (2020). How do we balance tensions between COVID-19 public health responses and stigma mitigation? Learning from HIV research. AIDS and Behavior, 24(7), 2003-2006.
Lu, H. P., & Wang, S. m. (2008). The role of Internet addiction in online game loyalty: an exploratory study. Internet Research, 18(5), 499-519.
Mallat, N., Rossi, M., Tuunainen, V. K., & Öörni, A. (2008). An empirical investigation of mobile ticketing service adoption in public transportation. Personal and Ubiquitous Computing, 12(1), 57-65.
Marinković, V., Đorđević, A., & Kalinić, Z. (2020). The moderating effects of gender on customer satisfaction and continuance intention in mobile commerce: a UTAUT-based perspective. Technology Analysis & Strategic Management, 32(3), 306-318.
Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734.
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. The Journal of Strategic Information Systems, 11(3-4), 297-323.
Meharia, P. (2012). Assurance on the reliability of mobile payment system and its effects on its′use: an empirical examination. Accounting and Management Information Systems, 11(1), 97.
Melby, J. N., Conger, R. D., Conger, K. J., & Lorenz, F. O. (1993). Effects of parental behavior on tobacco use by young male adolescents. Journal of Marriage and Family, 55(2), 439.
Miles, A. (2008). Perceived severity. National Cancer Institute. Retrieved 2022, May 24 from https://cancercontrol.cancer.gov/brp/research/constructs/perceived-severity
Morosan, C., & DeFranco, A. (2016). It′s about time: Revisiting UTAUT2 to examine consumers’ intentions to use NFC mobile payments in hotels. International Journal of Hospitality Management, 53, 17-29.
Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430.
Nunnally, J. C. (1994). Psychometric Theory 3E. Tata McGraw-hill Education.
Nutbeam, D., & Kickbusch, I. (1998). Health promotion glossary. Health Promotion International, 13(4), 349-364.
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414.
Our World In Data. (2022). COVID-19 Data Explorer. Our World In Data,. Retrieved 2022, March 20 from https://ourworldindata.org/explorers/coronavirus-data-explorer
Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, Article 102144.
Rippetoe, P. A., & Rogers, R. W. (1987). Effects of components of protection-motivation theory on adaptive and maladaptive coping with a health threat. Journal of Personality and Social Psychology, 52(3), 596.
Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The Journal of Psychology, 91(1), 93-114.
Salisbury, W. D., Pearson, R. A., Pearson, A. W., & Miller, D. W. (2001). Perceived security and World Wide Web purchase intention. Industrial Management & Data Systems, 101(4), 165-176.
Santrock, J. W. (2003). Adolescence (9 ed.). New York: McGraw-Hill. https://books.google.com.tw/books?id=nMSGAAAACAAJ
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216.
Schroeder, P., & Irrera, A. (2020). Fed quarantines US dollars repatriated from Asia on coronavirus caution. Reuters. Retrieved 2022, March 6 from https://www.reuters.com/article/us-health-coronavirus-fed-dollars-idUSKBN20T1YT
Sciglimpaglia, D., Tarr, E. K., & Brodowsky, G. H. (2020). Advertising and Peer Influences on Teen and Young Adolescent Alcohol Consumption Decisions: A Theory-of-Reasoned-Action Approach. Journal of Promotion Management, 27(3), 417-440.
Shankar, A., & Datta, B. (2018). Factors affecting mobile payment adoption intention: An Indian perspective. Global Business Review, 19(3), 72-89.
Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, Article 100823.
Shin, D.-H. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6), 1343-1354.
Shin, D.-H. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with Computers, 22(5), 428-438.
Sivathanu, B. (2018). Adoption of digital payment systems in the era of demonetization in India: An empirical study. Journal of Science and Technology Policy Management, 10(1), 143-171.
Steiger, J. H. (1980). Statistically based tests for the number of common factors. The Annual Meeting of the Psychometric Society. Iowa City, IA. 1980.
Sunny, P., & George, A. (2018). Determinants of Behavioral Intention To Use Mobile Wallets--a Conceptual Model. Journal of Management (JOM), 5(5), 52-62.
Taylor, & Todd. (1995a). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12(2), 137-155.
Taylor, & Todd. (1995b). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176.
Tian, Y., & Dong, H. (2013). An analysis of key factors affecting user acceptance of mobile payment. 2013 Second International Conference on Informatics & Applications (ICIA), 240-246.
Triandis, H. C. (1977). Interpersonal Behavior. Brooks/Cole Publishing Company.
Upadhyay, N., Upadhyay, S., Abed, S. S., & Dwivedi, Y. K. (2022). Consumer adoption of mobile payment services during COVID-19: extending meta-UTAUT with perceived severity and self-efficacy. International Journal of Bank Marketing, 40(5), 960-991.
Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative divide: Guidelines for conducting mixed methods research in information systems. MIS Quarterly, 37(1), 21-54.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Wei, T. T., Marthandan, G., Chong, A. Y. L., Ooi, K. B., & Arumugam, S. (2009). What drives Malaysian m‐commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3), 370-388.
Weiz, D., Anand, G., & Ernst, C.-P. H. (2016). The influence of subjective norm on the usage of smartglasses. In The Drivers of Wearable Device Usage (pp. 1-11). Springer.
Wikipedia. (2022). Generation. Retrieved 2022, April 6 from https://en.wikipedia.org/w/index.php?title=Generation&oldid=1087980236
Wu, J., & Liu, D. (2007). The effects of trust and enjoyment on intention to play online games. Journal of Electronic Commerce Research, 8(2).
Wulandari, N. (2017). Cashless payment in tourism. An application of technology acceptance model. Journal of Environmental Management & Tourism, 8(24), 1550-1553.
Xin, H., Techatassanasoontorn, A. A., & Tan, F. B. (2013). Exploring the influence of trust on mobile payment adoption. Pacific Asia Conference on Information Systems (PACIS) 2013 Proceedings, 143.
Zhao, Y., & Bacao, F. (2021). How does the pandemic facilitate mobile payment? An investigation on users’ perspective under the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 18(3), 1016.
Zhao, Y., Ni, Q., & Zhou, R. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. International Journal of Information Management, 43, 342-350.
Zhou, T. (2013). An empirical examination of continuance intention of mobile payment services. Decision Support Systems, 54(2), 1085-1091.
Zhu, D. H., Lan, L. Y., & Chang, Y. P. (2017). Understanding the Intention to Continue Use of a Mobile Payment Provider: An Examination of Alipay Wallet in China. International Journal of Business & Information, 12(4), 369-390.

中文文獻
王雅婷 (2020)。偽造還是不揭露?隱私與利益衝突對意圖之影響研究。國立中央大學資訊管理研究所碩士論文,桃園市。
江䒕蓁 (2021)。探索行動支付使用意願影響因素之研究:整合理性規畫、信任及科技接受模式。南臺科技大學會計資訊系碩士論文,臺南市。
何基鼎 (2006)。影響民眾申裝國道電子收費系統行為意向之研究。國立中央大學資訊管理研究所碩士論文,桃園市。
吳芷凡 (2013)。網路社群使用者的隱私關注與個人資料揭露行為之研究。國立中央大學資訊管理研究所碩士論文,桃園市。
吳思筠 (2021)。你從眾嗎?—影響多人線上遊戲轉換意圖之因素研究。國立中央大學資訊管理研究所碩士論文,桃園市。
李昕儒 (2014)。通訊軟體貼圖購買意圖之探討—以LINE為例。國立中央大學資訊管理研究所碩士論文,桃園市。
金管會 (2020)。109年1月份信用卡、現金卡、電子票證及電子支付機構業務資訊。金融監管管理委員會。Retrieved 2022年03月10日 from https://www.banking.gov.tw/ch/home.jsp?id=169&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202003050003&dtable=News
金管會 (2022)。111年1月份信用卡、現金卡、電子票證及電子支付機構業務資訊。
金融監管管理委員會。Retrieved 2022年03月10日 from https://www.banking.gov.tw/ch/home.jsp?id=169&parentpath=0,2&mcustomize=news_view.jsp&dataserno=202203100001&dtable=News
胡自立 (2021)。2020年行動支付大調查 [電子商務與數位經濟]。資策會產業情報研究所。
徐一正 (2017)。租還是買? 消費者的感知風險對 IAP 行為之影響分析。國立中央大學資訊管理研究所碩士論文,桃園市。
國家發展委員會 (2018)。行動支付讓生活更加便利。國家發展委員會。
Retrieved 2022, March 23 from https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xMjMyNy8wNTkzY2Q4NC0yNjJjLTQwOWQtYTdiZS03ZTcyYTg4ODM1MTAucGRm&n=57Ch5aCxMy3ooYzli5XmlK%2Fku5gucGRm&icon=..pdf
張亞亘 (2020)。2019年行動支付大調查 [電子商務與數位經濟]。資策會產業情報研究所。
陳美如、王渝薇、范錚強 (2016)。玩線上遊戲是計劃行為嗎? 從非計劃型的因素探討。資訊管理學報,23(2),頁217-245。
葉盈君 (2012)。淺談計畫行為理論。國家教育研究院。Retrieved 2022, April 25 from https://epaper.naer.edu.tw/index.php
葉香君 (2019)。「我在這裡」—隱私顧慮與自戀人格對使用社群媒體定位功能意圖之影響研究。國立中央大學資訊管理研究所碩士論文,桃園市。
雷庚玲、曾慧芸 (1999)。誰說我不聽話, 我聽朋友的話-談青少年社會同儕順從行為之發展現象與成因。In: 測驗與輔導。
廖珈燕 (2022)。2021年行動支付大調查 [電子商務與數位經濟]。資策會產業情報研究所。
維基百科 (2022a)。2019冠状病毒病疫情。Retrieved 2022年3月23日 from https://zh.wikipedia.org/wiki/2019冠状病毒病疫情
維基百科 (2022b)。同儕壓力。Retrieved 2022年3月29日 from https://zh.wikipedia.org/w/index.php?title=同儕壓力
維基百科 (2022c)。行動支付。維基百科。Retrieved 2022年3月30日 from https://zh.wikipedia.org/wiki/行動支付
劉政慶 (2016)。父母教養行為與青少年同儕壓力之關聯性—以自我調節為中介變項。國立中正大學心理學系研究所碩士論文,嘉義縣。
衛福部 (2022)。疾病介紹。衛生福利部疾病管理署。Retrieved 2022年3月15日 from https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A
指導教授 范錚強(C.K. Farn) 審核日期 2022-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明