![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:45 、訪客IP:3.142.250.99
姓名 黃右華(You-Hua Huang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 以離心震動台試驗探討邊坡在不同邊界條件的破壞行為
(Slope Failure Behavior at Different Boundary Conditions by Centrifuge Shaking Table Tests)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 邊坡滑動是山區最危險的災害之一,邊坡滑動造成的砂石能產生巨大衝擊力,輕易地摧毀鄰房、道路甚至是危害居民的生命財產安全。邊坡滑動的發生時間不容易預測,許多學術團隊蒐集邊坡滑動發生前的一些徵兆並加以分析,以提前警告居住在鄰近區域的人民。為了知道哪些區域容易發生邊坡滑動,了解土壤組成成分及各項參數是非常重要的。在過去的研究中,常以1g 縮尺模型探討邊坡滑動的行為,但在1g縮尺模型中,因為與現地應力環境不同,且顆粒效應與邊界效應會影響試驗結果,不容易重現與現地相同的破壞範圍及滑動土石總量。
本研究利用國立中央大學的地工離心機進行邊坡受震引致滑動破壞的離心模型試驗,試驗包含兩種不同邊界條件的邊坡,有別過去的三邊圍束模擬平面應變的邊界條件,製作單邊圍束與無圍束狀態下的離心模型邊坡試體進行離心振動台試驗。試驗材料以砂土 (60%) 和石英質粉土 (40%) 進行混合,並採用最佳含水量(O.M.C.)為11%的條件來製作離心模型,試驗過程中慢慢增加重力場直至離心模型發生破壞,且觀測邊坡在震動作用下的破壞行為。摘要(英) Landslide is one of the most dangerous disasters in mountainous areas. Landslide can not only easily destroy houses, roads, but also endanger the lives and properties of residents. It’s difficult to predict when the Landslide would happen. Many researchers are studying how to collect and analyze some signs in order to notify the neighboring people before the Landslide occur. Therefore, it is necessary to understand what areas and what kind of soil compositions have high potential of Landslide. In the previous study, the 1g scaled modelling was often used in the model to explore the situation when Landslide occurred. However, we could not reproduce the same damage range and the total amount of soil and rock washed down in the 1g scaled modelling.
In this study, the physical modelling of slope failure has been carried out in the geotechnical centrifuge shaking table at NCU. The centrifuge models were prepared with one contact interface and without contacting to container to simulate the 3-dimensional situations, which was different from the plan-stain condition with three contact interfaces with container in past studies. Focused on slope sliding at different boundary conditions. The slope models were prepared by mixing sand (60%) and silt (40%) and compacting at optimum water content. During the test, the artificial acceleration was gradually increased until slope failure occurred to observe the slope behaviors under shaking.關鍵字(中) ★ 離心模型試驗
★ 邊坡
★ 短時距傅立葉轉換
★ 小波轉換
★ 地理數值模型關鍵字(英) 論文目次 摘要 I
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xiii
一、緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
二、文獻回顧 3
2-1 離心模型原理 3
2-1-1 離心模型縮尺率 4
2-1-2 動態離心模型縮尺率 6
2-1-3 離心模型之有效半徑 7
2-1-4 科氏加速度對離心模型之影響 9
2-1-5 模型模擬 10
2-2 山坡地之定義 11
2-3 土壤剪力強度 12
2-4 土壤最佳含水量 (O.M.C.) 14
三、試驗設備與試體製作 15
3-1 試驗儀器與設備 15
3-1-1 地工離心機 15
3-1-2 單軸向震動台 16
3-1-3 資料擷取系統 20
3-1-4 固壁式蜂巢視窗試驗箱 21
3-1-5 各式感測器 22
3-1-6 高程剖面掃描系統 23
3-2 試驗材料 24
3-2-1 306號石英細砂 24
3-2-2 702號石英粉土 25
3-2-3 混和材料 26
3-2-4 金鋼砂 27
3-3 試驗設計 28
3-3-1 3D列印模型製作及測試 29
3-4 試體準備 30
3-4-1 試驗箱清潔及組立 30
3-4-2 試體模板製作 31
3-4-3 試體製作 37
3-4-4 試驗前表面高程掃描 39
3-4-5 試驗儀器校正 40
3-4-6 離心模型試驗前準備工作 41
四、試驗規劃與結果討論 42
4-1 試驗規劃 42
4-2 數據分析方法 46
4-2-1 主要震動事件之量化計算 46
4-2-2 系統探測 50
4-2-3 顯著頻率 51
4-2-4 轉換函數 52
4-2-5 震動事件之加速度歷時 52
4-2-6 加速度放大倍率 52
4-2-7 短時距傅立葉轉換 53
4-2-8 小波轉換 54
4-3 試驗結果 55
4-3-1 三面坡試體試驗結果 (3D-1) 55
4-3-2 三面坡試體試驗結果 (3D-2) 95
4-3-3 四面坡試體試驗結果 (4D-1) 135
4-3-4 四面坡試體試驗結果 (4D-2) 160
4-4 綜合討論 185
4-4-1 主要震動事件之量化 185
4-4-2 土層之剪力波速 186
4-4-3 土層之顯著頻率 187
4-4-4 土層之轉換函數 188
4-4-5 土層之加速度放大倍率 190
4-4-6 短時距傅立葉轉換 192
4-4-7 小波轉換 194
4-4-8 高程剖面掃描結果 196
五、結論與建議 203
5-1 結論 203
5-2 建議 204
參考文獻 205參考文獻 1. Askarinejad, A., Laue, J., Zweidler, A., Iten, M., Bleiker, E., Buschor, H., Springman, S.M., “Physical modelling of rainfall induced landslides under controlled climatic conditions,” EuroFuge 2012, pp. 1-10 (2012).
2. Das, B.M., and Sobhan, K., “Principles of Geotechnical Engineering”, Ninth Edition, SI, Cengage Learning, Boston (2016).
3. Fredlund, D.G., Morgenstern, N.R., and Widger, R.A., “The shear strength of unsaturated soils,” Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321 (1978).
4. Hung, W.Y., and Tran, M.C., “Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake,” National Central University, pp. 100-111 (2017).
5. Hung, W.Y., Lee, C.J., and Hu, L.M., “Study of the effects of contrainer boundary and slope on soil liquefaction by centrifuge modeling,” Soil Dynamics and Earthquake Engineering, (2018).
6. Ling, H.I., Wu, M.H., Leshchinsky, D., and Leshchinsky, B., “Centrifuge Modeling of Slope Instability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 6, pp. 758-767 (2009).
7. Yu, Y., Deng, L., Sun, X., and Lu, H., “Centrifuge modeling of a dry sandy slope response to earthquake loading,” Bulletin of Earthquake Engineering, Vol. 6, No. 3, pp. 447-461 (2008).
8. Lee, C.J., Wang, C.R., Wei,Y.C., and Hung, W.Y., “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bulletin of Earthquake Engineering, Vol. 10, No.2, pp. 401-420 (2012).
9. Haigh, S.K., Teymur, B., Madabhushi, S.P.G., and Newland, D.E., “Applications of wavelet analysis to the investigation of the dynamic behavior of geotechnical structures,” Soil Dynamics and Earthquake Engineering, 22, pp. 995-1005 (2002).
10. Wang, G.L., Zhang, L., Huang, Z.W., Liu, B.L., and Qiu P.Y., “Analysis of the Seismic Effect of Slopes with Different Shapes Under Dynamic Loads,” Geotechnical and Geological Engineering (2018).
11. Casini, F., Serri, V., and Springman S.M., “Hydromechanical behaviour of a silty sand from a steep slope triggered by artificial rainfall: from unsaturated to saturated conditions” Canadian Geotechnical Journal, 50, pp. 28-40 (2013).
12. Bowman, E.T., Laue, J., lmre, B., and Springman, S.M., “Experimental modelling of debris flow behavior using a geotechnical centrifuge” Canadian Geotechnical Journal, 47, pp. 742-762 (2010).
13. Lucas, D., Fankhauser, K., Maurer, H., McArdell, B., Grob, R., Herzog, R., Bleiker, E., and Springma, S.M., “Slope stability of a scree slope based on integrated characterization and monitoring” Water Journal, 12, 477 (2020).
14. Taylor, R.N., “Centrifuge in modelling: principles and scale scale effects,” In: Geotechnical Centrifuge Technology, edited by Taylor, R.N., CRC Press, pp.19-33 (1994).
15. Steedman, R.S., Zeng, X., “Dynamics,” In: Geotechnical Centrifuge Technology, edited by Taylor, R.N., CRC Press, pp.168-194 (1994).
16 劉全修,「台灣中南部粉土質細砂的壓縮性」,碩士論文,國立交通大學,新竹,台灣,(2008)
17. 翁英莉,「小林村天然壩材料特性與崩塌機制之研究」,碩士論文,國立中興大學土木工程學系,台中,台灣 (2012)。
18. 陳建宏,「小林村獻肚山深層崩塌地質構造及地質材料特性之研究」,碩士論文,國立成功大學土木工程學系,台南,台灣 (2011)。
19. 吳昕孺,「地震與降雨引致邊坡大規模順向滑動的震動訊號特性分析」,碩士論文,國立台灣大學土木工程學系,台北,台灣 (2021)。
20. 李錫堤、董家鈞、林銘郎,「小林村災變之地質背景探討」,地工技術,第122期,pp. 87-94 (2009)。
21. 李崇正,「離心機模型原理」,實驗土壤力學講義,桃園,台灣,(1997)。
22. 水土保持局,「山坡地土地可利用限度分類標準」,水保法規,台灣,(2020)。
23. 周南山、侯秉承、黃崇仁、李民政、吳富洵、唐孟瑜,「誰毀了小林村?-小林村災變調查與破壞模試探討」,技師報,第681期,(2009)。指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2022-8-29 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare