參考文獻 |
Abdulaal, M., LeBlanc, L.J., 1979. Continuous equilibrium network design models. Transportation Research Part B: Methodological 13, 19-32, doi: https://doi.org/10.1016/0191-2615(79)90004-3.
Bar-Gera, H., 2010. Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological 44, 1022-1046, doi: https://doi.org/10.1016/j.trb.2009.11.004.
Chang, C.W., 1997. Computational efficiency of path-based algorithm in solving the dynamic user-optimal route choice model. Master′s thesis. National Central University, Taiwan. (張佳偉,1997,路徑變數產生法求解動態交通量指派模型之效率比較,國立中央大學土木工程系碩士論文,中壢。)
Chao, G.S., Friesz, T.L., 1984. Spatial price equilibrium sensitivity analysis. Transportation Research Part B: Methodological 18, 423-440, doi: https://doi.org/10.1016/0191-2615(85)90010-4.
Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies 68, 285-299, doi: https://doi.org/10.1016/j.trc.2016.04.005.
Chen, H.K., 1999, Dynamic Travel Choice Models: A Variational Inequality Approach. Springer-Verlag, Berlin. (ISBN: 3-540-64953-0)
Chen, H.K., 2009, Transportation Planning and Networks, Tsang Hai, Taichung. (ISBN: 9-866-50755-6)( 陳惠國,2009,運輸規劃與網路,滄海,台中。)
Chen, H.K., 2011, Supernetworks for combined travel choice models, The Open Transportation Journal 5, 92-104
Chen, H.K., Chen, Y.C., 1999, Comparisons of the Frank-Wolfe and Evans Methods for the Doubly Constrained Entropy Distribution/Assignment Problem. EASTS’99, Taipei, Taiwan.
Chen, H.K., Chou, C.Y., Lai, C.T., 2004. A bilevel dynamic signal timing optimization problem, Proceedings of the IEEE International Conference on Networking, Sensing and Control, pp. 856-861, doi: 10.1109/ICNSC.2004.1297059.
Chen, H.K., Hsueh, C.-F., 1998. A model and an algorithm for the dynamic user-optimal route choice problem. Transportation Research Part B: Methodological 32, 219-234, doi: https://doi.org/10.1016/S0191-2615(97)00026-X.
Chen, H.K., Lui, S.H., Chang, C.H., 2002. Dynamic user equilibrium problem with link capacity and first-in-first-out constraints, Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, pp. 466-471, doi: https://10.1109/ITSC.2002.1041262.
Chen, L., Hu, T., 2012. Flow equilibrium under dynamic traffic assignment and signal control—an illustration of pretimed and actuated signal control policies. IEEE Transactions on Intelligent Transportation Systems 13, 1266-1276, doi: https://10.1109/TITS.2012.2188392.
Chin, K., Huang, H., Horn, C., Kasanicky, I., Weibel, R., 2019. Inferring fine-grained transport modes from mobile phone cellular signaling data. Computers, Environment and Urban Systems 77, 101348, doi: https://doi.org/10.1016/j.compenvurbsys.2019.101348.
Cho, H.-J., Lo, S.-C., 1999. Solving bilevel network design problem using a linear reaction function without nondegeneracy assumption. Transportation Research Record 1667, 96-106, doi: https://doi.org/10.3141/1667-12.
Chou, C.Y., 1999. Research of Dynamic Optimal Signal - A Application of Bi-Level Programming Model. Master′s Thesis, National Central University, Taiwan. (周鄭義,1999,動態號誌時制最佳化之研究-雙層規劃模型之應用,國立中央大學土木工程系碩士論文,中壢。)
Dong, S., Qin, X., Zhang, Y., Shi, Q., Ran, B., 2010. Dynamic network flow modeling based on cell probe data. Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, June 21-24, 2010, pp. 1140-1145, doi: https://doi.org/10.1109/IVS.2010.5548036.
Fiacco, A.V., McCormick. G.P., 1968. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley, New York. (ISBN: 0-471-25810-5)
Fisk, C.S., 1984. Game theory and transportation systems modelling. Transportation Research Part B: Methodological 18, 301-313, doi: https://doi.org/10.1016/0191-2615(84)90013-4.
Friesz, T.L., Tobin, R.L., Cho, H.-J., Mehta, N.J., 1990. Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Mathematical Programming 48, 265-284, doi: https://doi.org/10.1007/BF01582259.
García-Ródenas, R., López-García, M.L., Sánchez-Rico, M.T., 2017. An approach to dynamical classification of daily traffic patterns. Computer-Aided Civil and Infrastructure Engineering 32, 191-212.
Graybill, F.A., 1983. Matrices with Applications in Statistics. 2nd edition. Wadsworth Publishing Company, Belmont. (ISBN: 0-534-98038-4)
Han, K., Sun, Y., Liu, H., Friesz, T.L., Yao, T., 2015. A bi-level model of dynamic traffic signal control with continuum approximation. Transportation Research Part C: Emerging Technologies 55, 409-431, doi: https://doi.org/10.1016/j.trc.2015.03.037.
Jafari, E., Gemar, M.D., Juri, N.R., Duthie, J., 2015. Investigation of centroid connector placement for advanced traffic assignment models with added network detail. Transportation Research Record 2498, 19-26, doi: https://doi.org/10.3141/2498-03.
Jayakrishnan, R., Tsai, W.K., Prashker, Joseph, N. and Rajadhyaksha, S., 1994. A faster path-based algorithm for traffic assignment. UC Berkeley: University of California Transportation Center. <https://escholarship.org/uc/item/2hf4541x> (accessed 22.03.23.).
Li, Z., Shahidehpour, M., Bahramirad, S., Khodaei, A., 2017. Optimizing traffic signal settings in smart cities. IEEE Transactions on Smart Grid 8, 2382-2393, doi: 10.1109/TSG.2016.2526032.
Liu, W.-L., Gong, Y.-J., Chen, W.-N., Zhang, J., Dou, Z., 2021. An agile vehicle-based dynamic user equilibrium scheme for urban traffic signal control. IET Intelligent Transport Systems 15, 619-634, doi: https://doi.org/10.1049/itr2.12049.
Lord, D., Persaud, B.N., 2004. Estimating the safety performance of urban road transportation networks. Accident Analysis & Prevention 36, 609-620, doi: https://doi.org/10.1016/S0001-4575(03)00069-1.
Mounce, R., Carey, M., 2014. On the convergence of the method of successive averages for calculating equilibrium in traffic networks. Transportation Science 49, 535-542, doi: https://doi.org/10.1287/trsc.2014.0517.
Perakis, G., 2004. User equilibrium versus System Optimum in Transportation when Costs are Non-separable and Asymmetric. The Fifth Triennial Symposium on Transportation Analysis, Le Gosier, Guadeloupe, France, June 13-18, 2004.
Sheffi, Y., 1985. Urban transportation networks: Equilibrium analysis with mathematical programming methods. Prentice-Hall, New Jersey. (ISBN: 0-139-39729-9)
Tan, H.-N., Gershwin, S.B., Athans, M., 1979. Hybrid Optimization Urban Traffic Networks. United States. Department of Transportation. Research and Special Programs Administration. <https://rosap.ntl.bts.gov/view/dot/10369> (accessed 22.06.13.).
Tobin, R.L., 1986. Sensitivity analysis for variational inequalities, Journal of Optimization Theory and Applications 48, 191-204, doi: https://doi.org/10.1007/BF00938597.
Tobin, R.L., Friesz, T.L., 1988. Sensitivity analysis for equilibrium network flow. Transportation Science 22, 242-250, doi: https://doi.org/10.1287/trsc.22.4.242.
Van Vliet, D., 1987. The frank-wolfe algorithm for equilibrium traffic assignment viewed as a variational inequality. Transportation Research Part B: Methodological 21, 87-89, doi: https://doi.org/10.1016/0191-2615(87)90024-5.
Wardrop, J.G., 1952. Road paper. Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers 1, 325-362, doi: https://doi.org/ 10.1680/ipeds.1952.11259.
Wei, H., Zheng, G., Gayah, V.V., Li, Z.J., 2019. A survey on traffic signal control methods. ArXiv abs/1904.08117.
Wu, W., Cheu, E.Y., Feng, Y., Le, D.N., Yap, G.-E., Li, X., 2013. Studying intercity travels and traffic using cellular network data.
Xie, X.-F., Wang, Z.J., 2019. Combined traffic control and route choice optimization for traffic networks with disruptive changes. Transportmetrica B: Transport Dynamics 7, 814-833, doi: https://doi.org/10.1080/21680566.2018.1517059.
Zhuang, Y. H., 2006. First-in-first-out Dynamic Travel Time Functions and Origin-based Tarffic Assignment Algorithm. Master′s Thesis, National Central University, Taiwan. (莊英鴻,2006,先進先出動態旅行時間函數以及起點基礎之交通量指派演算法之研究,國立中央大學土木工程系碩士論文,中壢。) |