博碩士論文 109324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.16.130.38
姓名 吳律旻(Lu-Min Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 調整 Ni-P 共觸媒濃度與電沉積時間之鍺摻雜α-Fe2O3光陽極應用於 5-羥甲基糠醛選擇性氧化為 2,5-呋喃二甲酸
(Tuning the Precursor Concentration and Deposition Time of Nickel Phosphate Co-catalyst on Germanium doped α-Fe2O3 Photoanode for Selective oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-23以後開放)
摘要(中) 在光電化學 (Photoelectrochemical, PEC) 當中光陽極產氧並不符合動力學的趨勢,因此利用生質 (Biomass) 的選擇性氧化加以取代,透過反應得到具高附加價值的生質化學品,希望能代替原本的石化產品。本實驗選用地表含量豐富、光電表現穩定且無毒的α-Fe2O3作為光陽極,適合使用於長時間的氧化反應。透過水熱法製備α-Fe2O3薄膜,其中摻雜鍺 (Ge) 可以增加電子濃度,讓α-Fe2O3的導電度與載子遷移率增加,在光電化學上有更好的表現。反應物方面選用木質素衍生物5-羥甲基糠醛 (5- Hydroxymethylfurfural, HMF),透過氧化生成的2,5-呋喃二甲酸 (2,5-Furandicarboxylic acid, FDCA) 可聚合成聚2,5-呋喃二甲酸乙二酯 (Polyethylene 2,5-furandicarboxylate, PEF) 樹脂,可望能取代目前常用的聚對苯二甲酸乙二酯 (Polyethylene terephthalate, PET)。
透過裝載共觸媒幫忙捕捉電洞,降低再結合的機率,可以進一步幫助光電化學與氧化表現,透過改變電沉積時間與前驅液濃度裝載Nickel Phosphate (Ni-P),再利用四甲基哌啶氧化物 (2,2,6,6-Tetramethylpiperidine-1-oxyl, TEMPO) 輔助催化,促使HMF轉化為FDCA。結果顯示在選擇性氧化表現上以電沉積30分鐘,前驅液中鎳與磷酸根莫爾比為15比200時有最佳表現,與未裝載的情況相比,在反應12小時後FDCA的選擇率從35.4 % 提升至67.1 %,產率也從11.8 %上升至35.7 %,HMF的轉化率也有61.1 %,不僅如此,光電流也從0.51 mA上升至0.79 mA。綜上所述,作為HMF選擇性氧化的光陽極,α-Fe2O3是十分具潛力的選擇,Ni-P作為共觸媒能有效的幫助FDCA的生成,在反應中佔有重要的角色。
摘要(英) Anode oxygen evolution reaction ( OER ) is not kinetically favorable in photoelectrochemical ( PEC ) cell. Thus, it is feasible to replace OER by oxidizing the biomass into high value-added chemicals. In this work, we use α-Fe2O3 as the photoanode which is non-toxic, stable in PEC system and earth-abundant. First, Ge-doped α-Fe2O3 thin film was synthesized using hydrothermal method with germanium oxide (GeO2) adding into iron oxide precursor. Ge doping can increase electron concentration, conductivity and carrier mobility of α-Fe2O3. Therefore, it can improve the performance in PEC system. 5-Hydroxymethylfurfural (HMF) was used as the reactant and it was oxidized to 2,5-Furandicarboxylic acid (FDCA) which can be polymerized into Polyethylene 2,5-furandicarboxylate (PEF).
By loading the co-catalyst to capture holes and reduce the recombination, it can further enhance the photoelectrochemical and oxidation performance. Load Nickel Phosphate (Ni-P) by changing the electrodeposition time and the concentration of the precursor, and add 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a mediator which can facilitate the selective oxidation of HMF. The results show that for selective oxidation, the electrodeposition for 30 minutes and the molar ratio of nickel to phosphate in the precursor are the best at 15:200. Compared with the unloaded case, the selectivity of FDCA increased from 35.4 % to 67.1 % after 12 hours of reaction. The yield also increased from 11.8 % to 41.0 %, and the conversion of HMF also achieved 61.1 %. Moreover, the photocurrent increased from 0.51 mA to 0.79 mA. In conclusion, α-Fe2O3 is a promising chemical as a photoanode for the selective oxidation of HMF, and Ni-P, as a co-catalyst, can effectively help the formation of FDCA and plays a big part in the reaction.
關鍵字(中) ★ 光電化學
★ 氧化鐵
★ 選擇性氧化
關鍵字(英) ★ Photoelectrochemical
★ α-Fe2O3
★ Selective oxidation
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xv
第一章、 緒論 1
1-1前言 1
1-2 光觸媒發展 3
1-3研究動機 5
第二章、 文獻回顧 7
2-1半導體光觸媒 7
2-1-1半導體 7
2-1-2 光觸媒 9
2-1-3 半導體與電解液界面 10
2-2 光電化學分解水 12
2-3 α - Fe2O3 半導體光觸媒 15
2-3-1 α - Fe2O3 簡介 15
2-3-2 α - Fe2O3 光電化學特性與缺點 16
2-3-3 α - Fe2O3改善方法 18
2-3-3-1 型態優化 18
2-3-3-2 元素摻雜 19
2-3-3-3 共觸媒 20
2-3-3-4 鈍化層 22
2-3-3-5 基板與光觸媒的界面處理 22
2-4 光催化生質與選擇性氧化 24
2-4-1 光催化生質 24
2-4-2 選擇性氧化 27
2-5 電化學交流阻抗頻譜 30
2-5-1 EIS基礎理論 30
2-5-2 等效電路模型 30
第三章、 研究方法 34
3-1 實驗藥品 34
3-2實驗儀器 37
3-3 實驗步驟 42
3-3-1 光電極製備 42
3-3-1-1 α-Fe2O3試片 42
3-3-1-2 Ge doped α-Fe2O3試片 44
3-3-1-3 Ni-P共觸媒裝載 44
3-3-2 光電化學量測 45
3-3-3 選擇性氧化 46
3-3-3-1 反應系統 46
3-3-3-2 液相層析分析 47
3-3-4 EIS量測 48
第四章、 結果與討論 49
4-1 α-Fe2O3光電極 49
4-2 Ge doped α-Fe2O3光電極 52
4-2-1 基本性質分析 52
4-2-2光電化學分析 58
4-3 Ni-P共觸媒裝載 59
4-3-1 更變前驅液濃度之Ni-P裝載 59
4-3-1-1 基本性質分析 59
4-3-1-2 光電化學分析 67
4-3-1-3 HMF氧化反應 69
4-3-1-4 選擇性氧化檢量線 71
4-3-1-5 選擇性氧化結果分析 74
4-3-2 改變電鍍時間之Ni-P裝載 81
4-3-2-1 基本性質分析 81
4-3-2-2 光電化學分析 86
4-3-2-3 選擇性氧化結果分析 88
4-3-3 交流阻抗頻譜 92
第五章、 結論 97
第六章、 未來建議 98
參考文獻 99
附錄 106
參考文獻 1. IEA (2019), World Energy Outlook 2019, IEA, Paris.
2. Halkos, G.E. and E.-C. Gkampoura, Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies, 2020. 13(11).
3. Ahmed, R., et al., A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 2020. 124.
4. Sebestyén, V., Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renewable and Sustainable Energy Reviews, 2021. 151.
5. Ferreira-Filipe, D.A., et al., Are Biobased Plastics Green Alternatives?-A Critical Review. Int J Environ Res Public Health, 2021. 18(15).
6. Xiangjun Li, Renewable Energy Sources & Energy Storage, 2018, Springer.
7. Jacobsson, T.J., Photoelectrochemical water splitting: an idea heading towards obsolescence? Energy & Environmental Science, 2018. 11(8): p. 1977-1979.
8. Tilley, S.D., Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Advanced Energy Materials, 2019. 9(2).
9. Islam, M.S., Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Organic Electronics, 2017. 41: p. 143-156.
10. 李文豪 (民 110)。Ni-P 共觸媒裝載的鍺摻雜 α-Fe2O3光陽極應用於 HMF 選擇性氧化為 FDCA。碩士論文,國立中央大學.
11. Kawde, A., et al., A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Dalton Transactions, 2019. 48(4): p. 1166-1170.
12. Kawde, A., et al., Photoelectrochemical Oxidation in Ambient Conditions Using Earth-Abundant Hematite Anode: A Green Route for the Synthesis of Biobased Polymer Building Blocks. Catalysts, 2021. 11(8).
13. Jacquel, N., et al., Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer, 2015. 59: p. 234-242.
14. Cha, H.G. and K.S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem, 2015. 7(4): p. 328-33.
15. Karthikeyan, C., et al., Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 2020. 828.
16. Krishnan Rajeshwar, Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry. 2007.
17. A. Becquerel, Photoelctrochemical effect, Comptes rendus de lÁcademie des sciences 9 ,1839 14.
18. Fujishima, Akira; Honda, Kenichi, Electrochemical Photolysis of Water at a 102 Semiconductor Electrode. Nature,1972, 238(5358), 37–38.
19. Xiaoli C. Flat Band Potential of Semiconductor Electrodes. 化學通報. 2017.
20. Sharma, P., J.W. Jang, and J.S. Lee, Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe2O3Photoanode. ChemCatChem, 2018. 11(1): p. 157-179.
21. Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori, and Nathan S. Lewis, Solar Water Splitting Cells. Chem. Rev, 2010. 110, 6446–6473.
22. Kumar, S., S. Karthikeyan, and A. Lee, g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 2018. 8(2).
23. Cardenas-Morcoso, D., et al., A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019. 7(18): p. 11143-11149.
24. R.M. Cornell, U. Schwertmann, The Iron Oxides Structure, Properties, Reactions, Occurrences and Uses, 2003.
25. Kenneth L. Hardee and Allen J. Bard, Semiconductor Electrodes:V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis. J. Electrochem, 1976. 123, 1024.
26. Tolod, K.R., et al., Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries, in Horizons in Sustainable Industrial Chemistry and Catalysis. 2019. p. 65-84.
27. Dias, P., et al., Extremely stable bare hematite photoanode for solar water splitting. Nano Energy, 2016. 23: p. 70-79.
28. Yuan, D., et al., SECM evaluations of the crystal-facet-correlated photocatalytic activity of hematites for water splitting. Electrochemistry Communications, 2016. 73: p. 29-32.
29. Sivula, K., F. Le Formal, and M. Gratzel, Solar water splitting: progress using hematite (alpha-Fe(2) O(3) ) photoelectrodes. ChemSusChem, 2011. 4(4): p. 432-49.
30. John H. Kennedy and Karl W. Frese, Jr, Photooxidation of Water at α‐Fe2O3 Electrodes. 1978, J. Electrochem, 125, 709.
31. R. F. G. GARDNER, F. SWEETT and D. W. TANNER, The electrical properties of alpha ferric oxide—II.: Ferric oxide of high purity. 1963, J. Phys. Chem. Solids, 24, pp. 1183-1196.
32. Kevin Sivula, Radek Zboril, Florian Le Formal, Rosa Robert, Anke Weidenkaff, Jiri Tucek, Jiri Frydrych, and Michael Gra¨tzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, JACS, 2010.
33. Le Formal, F., et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci., 2011. 2(4): p. 737-743.
34. Li, L., et al., Facile solution synthesis of alpha-FeF3.3H2O nanowires and their conversion to alpha-Fe2O3 nanowires for photoelectrochemical application. Nano Lett, 2012. 12(2): p. 724-31.
35. Tamirat, A.G., et al., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz, 2016. 1(4): p. 243-267.
36. Maabong, K., et al., Nanostructured hematite thin films for photoelectrochemical water splitting. Physica B: Condensed Matter, 2018. 535: p. 67-71.
37. Wu, Y.-H., et al., Combinatorial Studies on Wet-Chemical Synthesized Ti-Doped α-Fe2O3: How Does Ti4+ Improve Photoelectrochemical Activity? ACS Applied Nano Materials, 2018. 1(7): p. 3145-3154.
38. Zhao, L., et al., Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International Journal of Hydrogen Energy, 2018. 43(28): p. 12646-12652.
39. Hien, T.T., et al., Sn Doping into Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting. Journal of The Electrochemical Society, 2019. 166(15): p. H743-H749.
40. Zhu, Q., C. Yu, and X. Zhang, Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation. Journal of Energy Chemistry, 2019. 35: p. 30-36.
41. Bai, S., et al., Surface and interface design in cocatalysts for photocatalytic water splitting and CO2reduction. RSC Advances, 2016. 6(62): p. 57446-57463.
42. Li, T.-T., et al., Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochimica Acta, 2019. 307: p. 92-99.
43. Chadderdon, D.J., et al., Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem, 2019. 6(13): p. 3387-3392.
44. Wang, J., et al., The role of thin NiPi film for enhancing solar water splitting performance of Ti doped hematite. Applied Catalysis B: Environmental, 2017. 218: p. 277-286.
45. Chong, R., et al., Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell. Solar Energy Materials and Solar Cells, 2017. 160: p. 287-293.
46. Iandolo, B., et al., Tailoring Charge Recombination in Photoelectrodes Using Oxide Nanostructures. Nano Lett, 2016. 16(4): p. 2381-6.
47. Liu, R., et al., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci., 2014. 7(8): p. 2504-2517.
48. Li, H.-M., et al., Synergetic integration of passivation layer and oxygen vacancy on hematite nanoarrays for boosted photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2021. 284.
49. Yi, S.-S., et al., Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021. 283.
50. Ji, H., et al., Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. Journal of Energy Chemistry, 2021. 52: p. 147-154.
51. Deng, J., Q. Zhuo, and X. Lv, Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2019. 835: p. 287-292.
52. Lhermitte, C.R., et al., Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes. RSC Adv, 2020. 11(1): p. 198-202.
53. Giannakoudakis, D.A., et al., Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry & Engineering, 2021. 9(5): p. 1970-1993.
54. Perini, N., et al., Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. Journal of Solid State Electrochemistry, 2021. 25(3): p. 1101-1110.
55. Lee, Y., et al., Surface-Modified Co-doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol. Catalysis Today, 2021. 359: p. 43-49.
56. Huang, L.-W., T.-G. Vo, and C.-Y. Chiang, Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell. Electrochimica Acta, 2019. 322.
57. Rani, M.A.A.B.A., N.A. Karim, and S.K. Kamarudin, Microporous and mesoporous structure catalysts for the production of 5‐hydroxymethylfurfural (5‐HMF). International Journal of Energy Research, 2021. 46(2): p. 577-633.
58. Eerhart, A.J.J.E., A.P.C. Faaij, and M.K. Patel, Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012. 5(4).
59. Amarasekara, A.S., et al., A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis. Green Chemistry, 2017. 19(6): p. 1570-1575.
60. Das, B. and K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021. 622.
61. Shih, Ruey-Fu; Hsu, Hsi-Yen (2012). United States Patent No. 20120016141. United States.
62. Sajid, M., X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018. 20(24): p. 5427-5453.
63. Swan, S.H., Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res, 2008. 108(2): p. 177-84.
64. Ball, G.L., C.J. McLellan, and V.S. Bhat, Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: A category approach. Crit Rev Toxicol, 2012. 42(1): p. 28-67.
65. Colmenares, J.C. and R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev, 2014. 43(3): p. 765-78.
66. Zhang, Y., et al., Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chemical Science, 2012. 3(9).
67. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009. 38(1): p. 253-78.
68. Wang, S., et al., Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 2021. 1(1).
69. 李芳芸 (民 102)。超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析。碩士論文,國立中央大學.
70. Diane K. Zhong and Daniel R. Gamelin, Photoelectrochemical Water Oxidation by Cobalt Catalyst (“Co-Pi”)/ α-Fe2O3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck, JACS, 2010, 132, 4202–4207.
71. Huang, X., et al., Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science: Nano, 2018. 5(8): p. 1790-1806.
72. Wang, J.C., et al., Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated alpha-Fe2O3 under visible light irradiation. J Hazard Mater, 2016. 311: p. 11-9.
73. Mishra, M. and D.-M. Chun, α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General, 2015. 498: p. 126-141.
74. Park, G.C., et al., Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. physica status solidi (a), 2013. 210(8): p. 1552-1556.
75. Hassanien, A.S. and A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. Journal of Alloys and Compounds, 2015. 648: p. 280-290.
76. Xie, J., et al., Amorphous NiP as cocatalyst for photocatalytic water splitting. Ceramics International, 2018. 44(5): p. 5459-5465.
77. Wang, Y., et al., Different performances of Ni3(PO4)2 in TiO2 photocatalysis under aerobic and anaerobic conditions. Catalysis Science & Technology, 2020. 10(6): p. 1761-1768.
78. Risch, M., et al., Nickel-oxido structure of a water-oxidizing catalyst film. Chem Commun (Camb), 2011. 47(43): p. 11912-4.
79. Masaya Chigane" and Masami lshikawa, Characterization of Electrochromic Nickel Oxide Thin Films prepared by Anodic Deposition, J. CHEM. SOC. FARADAY TRANS., 1992, 88(15), 2203-2205.
80. Choi, S.K., W. Choi, and H. Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys, 2013. 15(17): p. 6499-507.
81. Cardiel, A.C., B.J. Taitt, and K.-S. Choi, Stabilities, Regeneration Pathways, and Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering, 2019. 7(13): p. 11138-11149.
82. Salis, S., et al., Electrochemical Determination of the "Furanic Index" in Honey. Molecules, 2021. 26(14).
83. Bai, Z., et al., Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell. Journal of Solid State Electrochemistry, 2019. 24(2): p. 321-328.
84. Li, H., et al., Significant photoelectrochemical enhancement of TiO2 photoanodes from Ni(OH)2 electrocatalyst overcoating. Materials Research Express, 2017. 4(12).
85. Li, L., et al., The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. Journal of Alloys and Compounds, 2017. 696: p. 980-987.
86. Klahr, B., et al., Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc, 2012. 134(9): p. 4294-302.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2022-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明