參考文獻 |
1. IEA (2019), World Energy Outlook 2019, IEA, Paris.
2. Halkos, G.E. and E.-C. Gkampoura, Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources. Energies, 2020. 13(11).
3. Ahmed, R., et al., A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 2020. 124.
4. Sebestyén, V., Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renewable and Sustainable Energy Reviews, 2021. 151.
5. Ferreira-Filipe, D.A., et al., Are Biobased Plastics Green Alternatives?-A Critical Review. Int J Environ Res Public Health, 2021. 18(15).
6. Xiangjun Li, Renewable Energy Sources & Energy Storage, 2018, Springer.
7. Jacobsson, T.J., Photoelectrochemical water splitting: an idea heading towards obsolescence? Energy & Environmental Science, 2018. 11(8): p. 1977-1979.
8. Tilley, S.D., Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Advanced Energy Materials, 2019. 9(2).
9. Islam, M.S., Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Organic Electronics, 2017. 41: p. 143-156.
10. 李文豪 (民 110)。Ni-P 共觸媒裝載的鍺摻雜 α-Fe2O3光陽極應用於 HMF 選擇性氧化為 FDCA。碩士論文,國立中央大學.
11. Kawde, A., et al., A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Dalton Transactions, 2019. 48(4): p. 1166-1170.
12. Kawde, A., et al., Photoelectrochemical Oxidation in Ambient Conditions Using Earth-Abundant Hematite Anode: A Green Route for the Synthesis of Biobased Polymer Building Blocks. Catalysts, 2021. 11(8).
13. Jacquel, N., et al., Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer, 2015. 59: p. 234-242.
14. Cha, H.G. and K.S. Choi, Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat Chem, 2015. 7(4): p. 328-33.
15. Karthikeyan, C., et al., Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. Journal of Alloys and Compounds, 2020. 828.
16. Krishnan Rajeshwar, Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry. 2007.
17. A. Becquerel, Photoelctrochemical effect, Comptes rendus de lÁcademie des sciences 9 ,1839 14.
18. Fujishima, Akira; Honda, Kenichi, Electrochemical Photolysis of Water at a 102 Semiconductor Electrode. Nature,1972, 238(5358), 37–38.
19. Xiaoli C. Flat Band Potential of Semiconductor Electrodes. 化學通報. 2017.
20. Sharma, P., J.W. Jang, and J.S. Lee, Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe2O3Photoanode. ChemCatChem, 2018. 11(1): p. 157-179.
21. Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori, and Nathan S. Lewis, Solar Water Splitting Cells. Chem. Rev, 2010. 110, 6446–6473.
22. Kumar, S., S. Karthikeyan, and A. Lee, g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 2018. 8(2).
23. Cardenas-Morcoso, D., et al., A metal–organic framework converted catalyst that boosts photo-electrochemical water splitting. Journal of Materials Chemistry A, 2019. 7(18): p. 11143-11149.
24. R.M. Cornell, U. Schwertmann, The Iron Oxides Structure, Properties, Reactions, Occurrences and Uses, 2003.
25. Kenneth L. Hardee and Allen J. Bard, Semiconductor Electrodes:V. The Application of Chemically Vapor Deposited Iron Oxide Films to Photosensitized Electrolysis. J. Electrochem, 1976. 123, 1024.
26. Tolod, K.R., et al., Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries, in Horizons in Sustainable Industrial Chemistry and Catalysis. 2019. p. 65-84.
27. Dias, P., et al., Extremely stable bare hematite photoanode for solar water splitting. Nano Energy, 2016. 23: p. 70-79.
28. Yuan, D., et al., SECM evaluations of the crystal-facet-correlated photocatalytic activity of hematites for water splitting. Electrochemistry Communications, 2016. 73: p. 29-32.
29. Sivula, K., F. Le Formal, and M. Gratzel, Solar water splitting: progress using hematite (alpha-Fe(2) O(3) ) photoelectrodes. ChemSusChem, 2011. 4(4): p. 432-49.
30. John H. Kennedy and Karl W. Frese, Jr, Photooxidation of Water at α‐Fe2O3 Electrodes. 1978, J. Electrochem, 125, 709.
31. R. F. G. GARDNER, F. SWEETT and D. W. TANNER, The electrical properties of alpha ferric oxide—II.: Ferric oxide of high purity. 1963, J. Phys. Chem. Solids, 24, pp. 1183-1196.
32. Kevin Sivula, Radek Zboril, Florian Le Formal, Rosa Robert, Anke Weidenkaff, Jiri Tucek, Jiri Frydrych, and Michael Gra¨tzel, Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach, JACS, 2010.
33. Le Formal, F., et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci., 2011. 2(4): p. 737-743.
34. Li, L., et al., Facile solution synthesis of alpha-FeF3.3H2O nanowires and their conversion to alpha-Fe2O3 nanowires for photoelectrochemical application. Nano Lett, 2012. 12(2): p. 724-31.
35. Tamirat, A.G., et al., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz, 2016. 1(4): p. 243-267.
36. Maabong, K., et al., Nanostructured hematite thin films for photoelectrochemical water splitting. Physica B: Condensed Matter, 2018. 535: p. 67-71.
37. Wu, Y.-H., et al., Combinatorial Studies on Wet-Chemical Synthesized Ti-Doped α-Fe2O3: How Does Ti4+ Improve Photoelectrochemical Activity? ACS Applied Nano Materials, 2018. 1(7): p. 3145-3154.
38. Zhao, L., et al., Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International Journal of Hydrogen Energy, 2018. 43(28): p. 12646-12652.
39. Hien, T.T., et al., Sn Doping into Hematite Nanorods for High-Performance Photoelectrochemical Water Splitting. Journal of The Electrochemical Society, 2019. 166(15): p. H743-H749.
40. Zhu, Q., C. Yu, and X. Zhang, Ti, Zn co-doped hematite photoanode for solar driven photoelectrochemical water oxidation. Journal of Energy Chemistry, 2019. 35: p. 30-36.
41. Bai, S., et al., Surface and interface design in cocatalysts for photocatalytic water splitting and CO2reduction. RSC Advances, 2016. 6(62): p. 57446-57463.
42. Li, T.-T., et al., Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode. Electrochimica Acta, 2019. 307: p. 92-99.
43. Chadderdon, D.J., et al., Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem, 2019. 6(13): p. 3387-3392.
44. Wang, J., et al., The role of thin NiPi film for enhancing solar water splitting performance of Ti doped hematite. Applied Catalysis B: Environmental, 2017. 218: p. 277-286.
45. Chong, R., et al., Enhanced photoelectrochemical activity of Nickel-phosphate decorated phosphate-Fe2O3 photoanode for glycerol-based fuel cell. Solar Energy Materials and Solar Cells, 2017. 160: p. 287-293.
46. Iandolo, B., et al., Tailoring Charge Recombination in Photoelectrodes Using Oxide Nanostructures. Nano Lett, 2016. 16(4): p. 2381-6.
47. Liu, R., et al., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci., 2014. 7(8): p. 2504-2517.
48. Li, H.-M., et al., Synergetic integration of passivation layer and oxygen vacancy on hematite nanoarrays for boosted photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2021. 284.
49. Yi, S.-S., et al., Coupling effects of indium oxide layer on hematite enabling efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2021. 283.
50. Ji, H., et al., Unraveling the role of Ti3C2 MXene underlayer for enhanced photoelectrochemical water oxidation of hematite photoanodes. Journal of Energy Chemistry, 2021. 52: p. 147-154.
51. Deng, J., Q. Zhuo, and X. Lv, Hierarchical TiO2/Fe2O3 heterojunction photoanode for improved photoelectrochemical water oxidation. Journal of Electroanalytical Chemistry, 2019. 835: p. 287-292.
52. Lhermitte, C.R., et al., Direct photoelectrochemical oxidation of hydroxymethylfurfural on tungsten trioxide photoanodes. RSC Adv, 2020. 11(1): p. 198-202.
53. Giannakoudakis, D.A., et al., Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2,5-Furandicarboxylic Acid. ACS Sustainable Chemistry & Engineering, 2021. 9(5): p. 1970-1993.
54. Perini, N., et al., Photoelectrochemical oxidation of glycerol on hematite: thermal effects, in situ FTIR and long-term HPLC product analysis. Journal of Solid State Electrochemistry, 2021. 25(3): p. 1101-1110.
55. Lee, Y., et al., Surface-Modified Co-doped ZnO Photoanode for Photoelectrochemical Oxidation of Glycerol. Catalysis Today, 2021. 359: p. 43-49.
56. Huang, L.-W., T.-G. Vo, and C.-Y. Chiang, Converting glycerol aqueous solution to hydrogen energy and dihydroxyacetone by the BiVO4 photoelectrochemical cell. Electrochimica Acta, 2019. 322.
57. Rani, M.A.A.B.A., N.A. Karim, and S.K. Kamarudin, Microporous and mesoporous structure catalysts for the production of 5‐hydroxymethylfurfural (5‐HMF). International Journal of Energy Research, 2021. 46(2): p. 577-633.
58. Eerhart, A.J.J.E., A.P.C. Faaij, and M.K. Patel, Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science, 2012. 5(4).
59. Amarasekara, A.S., et al., A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from d-fructose and its application in polyester synthesis. Green Chemistry, 2017. 19(6): p. 1570-1575.
60. Das, B. and K. Mohanty, Sulfonic acid-functionalized carbon coated red mud as an efficient catalyst for the direct production of 5-HMF from d-glucose under microwave irradiation. Applied Catalysis A: General, 2021. 622.
61. Shih, Ruey-Fu; Hsu, Hsi-Yen (2012). United States Patent No. 20120016141. United States.
62. Sajid, M., X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018. 20(24): p. 5427-5453.
63. Swan, S.H., Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res, 2008. 108(2): p. 177-84.
64. Ball, G.L., C.J. McLellan, and V.S. Bhat, Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: A category approach. Crit Rev Toxicol, 2012. 42(1): p. 28-67.
65. Colmenares, J.C. and R. Luque, Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev, 2014. 43(3): p. 765-78.
66. Zhang, Y., et al., Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chemical Science, 2012. 3(9).
67. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009. 38(1): p. 253-78.
68. Wang, S., et al., Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 2021. 1(1).
69. 李芳芸 (民 102)。超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析。碩士論文,國立中央大學.
70. Diane K. Zhong and Daniel R. Gamelin, Photoelectrochemical Water Oxidation by Cobalt Catalyst (“Co-Pi”)/ α-Fe2O3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck, JACS, 2010, 132, 4202–4207.
71. Huang, X., et al., Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science: Nano, 2018. 5(8): p. 1790-1806.
72. Wang, J.C., et al., Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated alpha-Fe2O3 under visible light irradiation. J Hazard Mater, 2016. 311: p. 11-9.
73. Mishra, M. and D.-M. Chun, α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General, 2015. 498: p. 126-141.
74. Park, G.C., et al., Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. physica status solidi (a), 2013. 210(8): p. 1552-1556.
75. Hassanien, A.S. and A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. Journal of Alloys and Compounds, 2015. 648: p. 280-290.
76. Xie, J., et al., Amorphous NiP as cocatalyst for photocatalytic water splitting. Ceramics International, 2018. 44(5): p. 5459-5465.
77. Wang, Y., et al., Different performances of Ni3(PO4)2 in TiO2 photocatalysis under aerobic and anaerobic conditions. Catalysis Science & Technology, 2020. 10(6): p. 1761-1768.
78. Risch, M., et al., Nickel-oxido structure of a water-oxidizing catalyst film. Chem Commun (Camb), 2011. 47(43): p. 11912-4.
79. Masaya Chigane" and Masami lshikawa, Characterization of Electrochromic Nickel Oxide Thin Films prepared by Anodic Deposition, J. CHEM. SOC. FARADAY TRANS., 1992, 88(15), 2203-2205.
80. Choi, S.K., W. Choi, and H. Park, Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys, 2013. 15(17): p. 6499-507.
81. Cardiel, A.C., B.J. Taitt, and K.-S. Choi, Stabilities, Regeneration Pathways, and Electrocatalytic Properties of Nitroxyl Radicals for the Electrochemical Oxidation of 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering, 2019. 7(13): p. 11138-11149.
82. Salis, S., et al., Electrochemical Determination of the "Furanic Index" in Honey. Molecules, 2021. 26(14).
83. Bai, Z., et al., Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell. Journal of Solid State Electrochemistry, 2019. 24(2): p. 321-328.
84. Li, H., et al., Significant photoelectrochemical enhancement of TiO2 photoanodes from Ni(OH)2 electrocatalyst overcoating. Materials Research Express, 2017. 4(12).
85. Li, L., et al., The influence of the hydrothermal temperature and time on morphology and photoelectrochemical response of α-Fe2O3 photoanode. Journal of Alloys and Compounds, 2017. 696: p. 980-987.
86. Klahr, B., et al., Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc, 2012. 134(9): p. 4294-302. |