參考文獻 |
[1] Bolaños, K., et al. (2019). "Capping gold nanoparticles with albumin to improve their biomedical properties." International journal of nanomedicine 14: 6387.
[2] Ceja-Fdez, A., et al. (2014). "Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium." Rsc Advances 4(103): 59233-59241.
[3] Sooraj, K., et al. (2018). "SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays." Applied Surface Science 447: 576-581.
[4] Wu, Z.-S., et al., Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering. Talanta, 2006. 70(3): p. 533-539.
[5] Botta, R., A. Rajanikanth, and C. Bansal, Silver nanocluster films for glucose sensing by Surface Enhanced Raman Scattering (SERS). Sensing and bio-sensing research, 2016. 9: p. 13-16.
[6] Peters, R.F., et al., Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates. JoVE (Journal of Visualized Experiments), 2015(97): p. e52712. [7] Shafer-Peltier, K.E., et al., Toward a glucose biosensor based on surface-enhanced Raman scattering. Journal of the American Chemical Society, 2003. 125(2): p. 588-593.
[8] Yonzon, C.R., et al., A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Analytical Chemistry, 2004. 76(1): p. 78-85.
[9] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.
[10] Israelsen, N. D., et al. (2015). "Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction." The Scientific World Journal 2015.
[11] McNay, G., et al. (2011). "Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications." Applied spectroscopy 65(8): 825-837.
[12] Zong, C., et al. (2018). "Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges." Chemical reviews 118(10): 4946-4980.
[13] Sharma, B., et al. (2012). "SERS: Materials, applications, and the future." Materials today 15(1-2): 16-25.
[14] Syahir, A. (2014). "Label-free photonics biosensor transducing nano-biological events." Journal of Biochemistry, Microbiology and Biotechnology 2(1): 32-38.
[15] Kumar, S., et al. (2020). Surface-enhanced raman scattering: Introduction and applications. Recent Advances in Nanophotonics-Fundamentals and Applications, IntechOpen London, UK: 1-24.
[16] Le Ru, E. and P. Etchegoin (2009). Principles of Surface Enhanced Raman Spetroscopy, Elsevier, Amsterdam.
[17]Brown, B.H., et al., Medical Physics and Biomedical Engineering: Medical Science Series. 2017: CRC Press.
[18] Procházka, M. (2016). "Surface-Enhanced Raman Spectroscopy." Biological and medical physics, biomedical engineering: 1-221.
[19] Sun, X. (2021). "Glucose detection through surface-enhanced Raman spectroscopy: a review." Analytica Chimica Acta: 339226.
[20] Cara, E., et al., Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2020. 8(46): p. 16513-16519.
[21] Kumar, S., et al., Surface-enhanced raman scattering: Introduction and applications, in Recent Advances in Nanophotonics-Fundamentals and Applications. 2020, IntechOpen London, UK. p. 1-24.
[23] Zong, C., et al., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical reviews, 2018. 118(10): p. 4946-4980.
[24] Sperling, R. A., et al. (2008). "Biological applications of gold nanoparticles." Chemical Society Reviews 37(9): 1896-1908.
[25] Cheng Zong, Mengxi Xu, Li-Jia Xu, Ting Wei, Xin Ma, Xiao-Shan Zheng, Ren Hu, and Bin Ren. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges . Chemical Reviews. Chem. Rev. 2018, 118, 10, 4946–4980.
[26] Oliver, N., et al. (2009). "Glucose sensors: a review of current and emerging technology." Diabetic Medicine 26(3): 197-210.
[27] Chisanga, M., et al. (2019). "Enhancing disease diagnosis: biomedical applications of surface-enhanced Raman scattering." Applied Sciences 9(6): 1163
[28] McAnally, M. O., et al. (2017). "Quantitative determination of the differential raman scattering cross sections of glucose by femtosecond stimulated raman scattering." Analytical chemistry 89(13): 6931-6935.
[29] Sun, X. and H. Li (2013). "Gold nanoisland arrays by repeated deposition and post-deposition annealing for surface-enhanced Raman spectroscopy." Nanotechnology 24(35): 355706.
[30] Arbuz, A., et al. (2022). "How gap distance between gold nanoparticles in dimers and trimers on metallic and non-metallic SERS substrates can impact signal enhancement." Nanoscale Advances 4(1): 268-280.
[31] García-Vidal, F. J. and J. Pendry (1996). "Collective theory for surface enhanced Raman scattering." Physical Review Letters 77(6): 1163.
[32] Nguyen, T. A. N., et al. (2021). "Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy." ACS Photonics 8(8): 2410-2416.
[33] Khalil, S. M., et al. (2013). "A theoretical study of carbohydrates as corrosion inhibitors of iron." Zeitschrift für Naturforschung A 68(8-9): 581-586.
[34] Chien, F.-C., et al. (2021). "Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots." ACS Applied Nano Materials 4(3): 2614-2620. |