![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:11 、訪客IP:3.147.44.253
姓名 楊緣智(Yuan-Chih Yang) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 藉由權重之梯度大小調整DropConnect的捨棄機率來訓練神經網路
(Training a neural network by adjusting the drop probability in DropConnect based on the magnitude of the gradient)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在深度學習訓練中,Dropout 和 DropConnect 是常被用來解決過度
擬合的正則化技術,Dropout 和 DropConnect 藉由在訓練過程中以一個
固定機率隨機地捨棄神經元及該神經元前後的連結,使得每個神經元彼
此之間不會過度依賴其他神經元,進而提高模型泛化的能力。
本文提出了一種新模型 Gradient DropConnect,它利用每個權重和
偏差的梯度以確定它們在訓練期間的下降捨棄機率。我們進行了一連串
的實驗以驗證這種方法可以有效地緩解過度擬合。摘要(英) Dropout and DropConnect are regularization techniques often used to address the overfitting issue in deep learning. Dropout and DropConnect randomly discard neurons or links with a fixed probability during training
so that each neuron does not depend too much on other neurons, thereby improving the model’s generalization ability.
This paper proposes a new model, Gradient DropConnect, which leverages the gradient of each weight and bias to determine their dropping probabilities during training. We conducted thorough experiments to validate that such an approach can effectively mitigate overfitting.關鍵字(中) ★ 過度擬合、正則化、Dropout、DropConnect、泛化 關鍵字(英) ★ Overfitting, Regularization, Dropout, DropConnect, Generalization 論文目次 目錄
頁次
摘要 iv
Abstract v
致謝 vi
目錄 viii
圖目錄 xi
表目錄 xii
一、 緒論 1
1.1 研究動機 .................................................................. 1
1.2 研究目標 .................................................................. 2
1.3 研究貢獻 .................................................................. 2
1.4 論文架構 .................................................................. 3
二、 相關研究 4
2.1 Dropout ................................................................... 4
2.2 Adaptive dropout for training deep neural networks............ 6
2.3 DropConnect ............................................................. 7
2.4 Inverted Dropout ........................................................ 7
三、 模型及方法 9
3.1 模型架構 .................................................................. 9
viii
目錄
3.2 DropConnect 與 Mask 遮罩矩陣 .................................... 10
3.3 Gradient DropConnect ................................................. 12
3.4 模型虛擬碼 (PseudoCode) ............................................ 18
四、 實驗結果 21
4.1 實驗參數細節 ............................................................ 21
4.2 訓練用資料集 ............................................................ 21
4.2.1 隨機生成的線性回歸資料集 ................................. 21
4.2.2 MNIST............................................................ 22
4.2.3 CIFAR10 ......................................................... 22
4.2.4 CIFAR100........................................................ 22
4.2.5 NORB............................................................. 22
4.3 實驗一: 觀察 Gradient DropConnect 的特性..................... 23
4.4 實驗二: 比較 Gradient DropConnect 和其他正則化方法的
效能 ............................................................................... 25
4.4.1 MNIST Dataset 的結果....................................... 27
4.4.2 CIFAR10 Dataset 的結果 .................................... 29
4.4.3 CIFAR100 Dataset 的結果 ................................... 36
4.4.4 NORB Dataset 的結果........................................ 38
4.5 實驗三: 探討 Gradient DropConnect 和一般 DropConnect
在不同捨棄機率下的效能 .................................................... 42
4.6 實驗四: DropConnect、Dropout 和 Gradient DropConnect
訓練完的參數分布比較 ....................................................... 44
五、 總結 48
5.1 結論 ........................................................................ 48
5.2 未來展望 .................................................................. 48
參考文獻 51
ix
目錄
附錄 A 補充模型架構 53
A.1 AlexNet.................................................................... 53
A.2 VGG........................................................................ 54
A.3 實驗及模型程式碼 ...................................................... 55參考文獻 參考文獻
[1] “Sppmg/TW_thesis_template,” GitHub. (), [Online]. Available: https://github.
com/sppmg/TW_Thesis_Template (visited on 10/23/2016).
[2] D. M. Hawkins, “The problem of overfitting,” Journal of chemical information and computer sc
vol. 44, no. 1, pp. 1–12, 2004.
[3] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks
architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.
[4] O. Bousquet and A. Elisseeff, “Stability and generalization,” The Journal of Machine Learning
vol. 2, pp. 499–526, 2002.
[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
arXiv preprint arXiv:1207.0580, 2012.
[6] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neu-
ral networks using dropconnect,” in International conference on machine learning,
PMLR, 2013, pp. 1058–1066.
[7] J. V. Uspensky, “Introduction to mathematical probability,” 1937.
[8] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,” Advances in neural in
vol. 26, 2013.
[9] P. Galeone, Analysis of dropout, Jan. 2017. [Online]. Available: https://pgaleone.
eu/deep-learning/regularization/2017/01/10/anaysis-of-dropout/.
[10] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal bio-
metric systems,” Pattern recognition, vol. 38, no. 12, pp. 2270–2285, 2005.
[11] D. G. Altman and J. M. Bland, “Statistics notes: The normal distribution,” Bmj,
vol. 310, no. 6975, p. 298, 1995.
[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.
[13] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.
51
[14] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object recog-
nition with invariance to pose and lighting,” in Proceedings of the 2004 IEEE Computer Society
IEEE, vol. 2, 2004, pp. II–104.
[15] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade,
Springer, 2012, pp. 421–436.
[16] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look at
signal fidelity measures,” IEEE signal processing magazine, vol. 26, no. 1, pp. 98–
117, 2009.
[17] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:171
2017.
[18] ——, “Sgdr: Stochastic gradient descent with warm restarts,” arXiv preprint arXiv:1608.03983,
2016.
[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, 2012.
[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[21] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-
onal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.
[22] P. Juszczak, D. Tax, and R. P. Duin, “Feature scaling in support vector data
description,” in Proc. asci, Citeseer, 2002, pp. 95–102.
[23] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation.,” Encyclopedia of database systems,
vol. 5, pp. 532–538, 2009.
[24] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks of the trade,
Springer, 1998, pp. 55–69.
[25] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of Computational and
vol. 10, no. 1, pp. 1–50, 2001.
[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistic
vol. 58, no. 1, pp. 267–288, 1996.
52指導教授 陳弘軒(Hung-Hsuan Chen) 審核日期 2022-7-19 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare