姓名 |
王崇驊(WANG,CHONG-HUA)
查詢紙本館藏 |
畢業系所 |
資訊管理學系 |
論文名稱 |
結合因子選股與系統交易的股票操作系統之分析設計與實作 – 以美股市場為例 (Combining Factor Stock Selection and System Trading to Design and Implement an Analyzing System on Stocks in Major U.S. Exchanges)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
許多學者透過量化多因子模型的方式,企圖以實證的角度去尋找那些績效存在規律,且能夠為投資人帶來超額報酬的因子,而除了單純的因子選股外,也有文獻開始加入擇時策略試圖進一步改善其績效。為此,研究參考卓育辰(2021)所提出之量化選股模型,並針對架構重新設計,使其具備在不同國家轉換回測之機制,除了實驗財務因子在現今美股的選股效果外,亦加入多項技術策略以驗證是否能夠一致性的改善報酬或風險。
本研究透過 Python 建構回測系統,使系統在擴充上更具彈性。系統使用七項單因子及三項雙因子以實驗財務因子在現今美國市場上的選股效果,並使用買入持有、逆勢布林通道、逢低買進及逆勢高低通道四項技術策略驗證是否能夠對績效帶來一致性的影響。除了財務因子與技術策略兩項參數外,系統亦提供兩項市場、三種最佳化窗格、兩種資金配置法、十個群組與五種持有股數等五種可調參數,以實驗不同配置對績效的影響。
實驗結果發現有些財務因子在現今的美國市場仍存在篩選股票的價值,其中市值營收比在相關性以及獲利性上的表現較為良好,而技術策略的使用普遍能夠降低最大交易回落,為投資人帶來較低的投資風險。 |
摘要(英) |
Many scholars have attempted to find the factors that have a pattern of performance and bring profit to investors from an empirical perspective by quantifying multi-factor models. In addition to factor stock selection, some literature tried to combine timing strategy to improve investment performance. Therefore, this research refers to the quantitative selection model proposed by Zhuo, Yu-Chen and redesign the architecture. Make the model have a mechanism for switching between countries. To verify stock selection performance of the financial factor on U.S. stocks and also testing weather technical strategy could improve profit or risk consistency.
This research’s backtesting system is built in Python to make the system more flexible in terms of expansion. The system uses seven single-factor and three dual-factor to test the effectiveness of financial factor stock selection in today′s U.S. stock. It also using buy-and-hold, inverse Bollinger Bands, bargaining hunting, and inverse high-low
channels to test whether the technical strategies have a consistent impact on performance. In addition to the factor and technical strategy, the system also provides five adjustable parameters, including two markets, three optimization windows, two capital allocation methods, ten groups and five shareholdings, to test the impact of the
performance when experiment adjust it allocation.
Experiment show that some financial factors are still have value of stock selection in today′s U.S. stock, especially PS have best correlation and profitability. And also found
that technical strategies could generally reduces maximum drawdown, bring the lower investment risk for investors. |
關鍵字(中) |
★ 多因子模型 ★ 技術策略 ★ 量化交易 ★ 移動窗格 ★ 因子投資 |
關鍵字(英) |
★ Multi-Factor Models ★ Technical Analysis ★ Quantitative Trading ★ Walk Forward Analysis ★ Factor Investment |
論文目次 |
摘要.................................................................................................................................i
Abstract.........................................................................................................................ii
致謝辭........................................................................................................................... iii
圖目錄........................................................................................................................... vi
表目錄......................................................................................................................... viii
第一章、 緒論........................................................................................................1
1.1 研究背景................................................................................................1
1.2 研究動機................................................................................................2
1.3 研究目的................................................................................................2
第二章、 文獻探討................................................................................................4
2.1 量化交易................................................................................................4
2.1.1 最佳化............................................................................................4
2.1.2 移動窗格........................................................................................6
2.2 因子投資................................................................................................7
2.2.1 多因子模型相關理論 ...................................................................7
2.2.2 量化多因子模型 ...........................................................................8
2.3 系統交易的資金配置計算 .................................................................10
2.3.1 個股每日賺賠表 .........................................................................10
2.3.2 資金權重配置表 .........................................................................11
2.3.3 績效表..........................................................................................12
第三章、 系統設計與實作 .................................................................................13
3.1 系統架構與流程 .................................................................................13
3.1.1 系統架構......................................................................................13
3.1.2 系統流程......................................................................................14
3.2 窗格切割..............................................................................................17
3.3 因子選股..............................................................................................18
3.3.1 標的排序......................................................................................18
3.3.2 標的分群......................................................................................19
3.3.3 標的選擇......................................................................................19
3.4 參數最佳化與回測 .............................................................................20
3.4.1 技術策略......................................................................................20
3.4.2 參數最佳化 .................................................................................21
3.4.3 回測..............................................................................................22
3.5 績效計算與儲存 .................................................................................22
3.5.1 每日權益計算 .............................................................................22
3.5.2 權益正規化 .................................................................................23
v
第四章、 系統驗證與分析 .................................................................................24
4.1 實驗變數..............................................................................................24
4.1.1 資料來源......................................................................................24
4.1.2 市場..............................................................................................24
4.1.3 因子組合......................................................................................24
4.1.4 技術策略......................................................................................27
4.1.5 窗格最佳化 .................................................................................27
4.1.6 資金配置法 .................................................................................27
4.1.7 群組..............................................................................................27
4.1.8 持有股數......................................................................................27
4.2 實驗設計..............................................................................................28
4.2.1 實驗流程......................................................................................28
4.2.2 實驗環境......................................................................................31
4.3 實驗結果..............................................................................................31
4.3.1 因子相關性及獲利性分析 .........................................................31
4.3.2 技術面策略有效性分析 .............................................................48
4.3.3 最佳化窗格績效分析 .................................................................55
4.3.4 資金配置之績效差異分析 .........................................................57
4.4 實驗系統效益 .....................................................................................62
第五章、 結論......................................................................................................63
5.1 結論......................................................................................................63
5.2 研究限制..............................................................................................64
5.3 未來建議..............................................................................................65
參考文獻......................................................................................................................66
附錄..............................................................................................................................68 |
參考文獻 |
Bollinger, J. (2001). Bollinger on Bollinger Bands. McGraw-Hill Education.
Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. The Journal of
Finance, 52(1), 57-82.
Chan, E. P. (2008). Quantitative Trading: How to Build Your Own Algorithmic Trading
Business. Wiley.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2th ed.).
Lawrence Erlbaum Associates.
Davey, K. J. (2014). Building Winning Algorithmic Trading Systems: A Trader′s
Journey From Data Mining to Monte Carlo Simulation to Live Trading. Wiley.
Faith, C. (2007). Way of the Turtle: The Secret Methods That Turned Ordinary People
Into Legendary Traders. McGraw-Hill.
Fama, E. F., & French, K.R. (1993). Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics, 33(1), 3-56.
Fama, E. F., & French, K.R. (2015). A five-factor asset pricing model. Journal of
Financial Economics, 116(1), 1-22.
Ger, S., Salehipour, A., Sim, A., & Wu, J. (2015). Backtest Overfitting: An Interactive
Example. Retrieved from University of California, Lawrence Berkeley National
Laboratory Web site: http://datagrid.lbl.gov/backtest/.
Graham, B., & Dodd, D. (1934). Security analysis: principles and technique. McGrawHill.
Pardo, R. (2008). The Evaluation and Optimization of Trading Strategies. Wiley.
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic
Theory, 13(3), 341-360.
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under
67
Conditions of Risk. The Journal of Finance, 19(3), 425-442.
Tortoriello, R. (2008). Quantitative Strategies for Achieving Alpha: The Standard and
Poor′s Approach to Testing Your Investment Choices. McGraw Hill Professional.
Wilder, J. W. (1978). New Concepts in Technical Trading Systems. Trend Research
丁鵬(2012)。量化投資:策略與技術。電子工業出版社。
石川(2020)。因子投資:方法與實踐。電子工業出版社。
卓育辰(2021)。結合因子分析與程式交易應用於台股之自動化回測與驗證平台。
國立中央大學資訊管理學系碩士論文,桃園市。
張林忠(2014)。分析師關鍵報告 2:張林忠教你程式交易。寰宇。
張維真(2019)。運用等分法與核心交易策略建構投資組合之自動化交易分析平
台—以美股為範例。國立中央大學資訊管理學系碩士論文,桃園市。
彭康哲(2016)。結合程式交易與選股模型的分析平台之設計與實作 – 以美國
股票市場為例。國立中央大學資訊管理學系碩士論文,桃園市。
廖顥軒(2022)。多樣性系統交易策略之績效比較與視覺化平台的設計與建置。國
立中央大學資訊管理學系碩士論文,桃園市。
蔡嘉民(2019)。程式交易的理論與實踐。經濟日報出版社。
穆慧萍(2008)。統計學。立信會計出版社。
Natenberg, S. (2014)。期權波動率與定價:高級交易測策略與技巧[韓冰潔,譯]。
機械工業出版社。(原著出版年:2014) |
指導教授 |
許智誠
|
審核日期 |
2022-7-6 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|