參考文獻 |
[1] P. Rosin and E. Ioannidis, "Evaluation of global image thresholding for change detection", Pattern Recognit. Lett., vol. 24, no. 14, pp. 2345-2356, Oct. 2003.
[2] P. Rosin, "Thresholding for change detection", Proc. IEEE Int. Conf. Computer Vision, pp. 274-279, 1998-Jan.
[3] R. Vázquez-Jiménez, R. N. Ramos-Bernal, R. Romero-Calcerrada, P. Arrogante-Funes, S. S. Tizapa and C. J. Novillo, "Thresholding algorithm optimization for change detection to satellite imagery" in Colorimetry Image Processing, Rijeka, Croatia:InTech, 2018.
[4] Y. Zhang, D. Peng and X. Huang, "Object-based change detection for VHR images based on multiscale uncertainty analysis", IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 13-17, Jan. 2018.
[5] K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao and P. Du, "Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral–spatial features", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3439-3451, Aug. 2016.
[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., "Attention Is All You Need", CoRR, vol. abs/1706.03762, 2017.
[7] S. Woo, J. Park, J.-Y. Lee and I. S. Kweon, "CBAM: Convolutional block attention module", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 8-14, Sep. 2018.
[8] M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", Proc. 36th Int. Conf. Mach. Learn., pp. 6105-6114, 2019.
[9] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition", 2015.
[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database", Proc. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 248-255, 2009.
[11] CIFAR-10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html
[12] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning", arXiv:1611.01578, 2016, [online] Available: https://arxiv.org/abs/1611.01578.
[13] M. Tan et al., "MnasNet: Platform-aware neural architecture search for mobile", arXiv:1807.11626, 2018, [online] Available: https://arxiv.org/abs/1807.11626.
[14] A. G. Howard et al., MobileNets: Efficient convolutional neural networks for mobile vision applications, Apr. 2017, [online] Available: https://arxiv.org/abs/1704.04861.
[15] O. Ronneberger, P. Fischer and T. Brox, "U-net: Convolutional networks for biomedical image segmentation", Proc. Med. Image Comput. Comput.-Assisted Intervention, pp. 234-241, 2015.
[16] J. Fu et al., "Dual attention network for scene segmentation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3141-3149, 2019.
[17] R. C. Daudt, B. Le Saux and A. Boulch, "Fully convolutional Siamese networks for change detection", Proc. 25th IEEE Int. Conf. Image Process., pp. 4063-4067, 2018.
[18] E. Guo et al., "Learning to measure change: Fully convolutional Siamese metric networks for scene change detection", arXiv:1810.09111, 2018.
[19] H. Chen and Z. Shi, "A spatial-temporal attention-based method and a new dataset for remote sensing image change detection", Remote Sens., vol. 12, no. 10, pp. 1662, May 2020.
[20] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid scene parsing network", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6230-6239, 2017.
[21] L. Di, W. Liejun, C. Shuli, L. Yongming, and D. C. A. N. Anyu, “A combined attention network for remote sensing image change detection,” Information, vol. 12, pp. 1–16, 2021.
[22] S. W. Zamir et al., "Multi-stage progressive image restoration", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 1-11, Feb. 2021.
[23] A. Varghese, J. Gubbi, A. Ramaswamy and P. Balamuralidhar, "ChangeNet: A deep learning architecture for visual change detection", Proc. Eur. Conf. Comput. Vis., pp. 129-145, 2018.
[24] Sung-Jin Cho, Seo-Won Ji and Jun-Pyo Hong, "Seung-Won Jung and Sung-Jea Ko. Rethinking Coarse-to-Fine Approach in Single Image Deblurring", ICCV, 2021.
[25] LEVIR-CD,圖片來源取自:https://justchenhao.github.io/LEVIR/
[26] M. Lebedev, Y. V. Vizilter, O. Vygolov, V. Knyaz and A. Y. Rubis, "Change detection in remote sensing images using conditional adversarial networks", Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci., vol. 42, no. 2, pp. 565-571, 2018.
[27] S. Ji, S. Wei and M. Lu, "Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set", IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574-586, Jan. 2019.
[28] F. Milletari, N. Navab and S.-A. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation", Proc. 4th Int. Conf. 3D Vis. (3DV), pp. 565-571, Oct. 2016.
[29] H. Chen, Z. Qi and Z. Shi, "Remote sensing image change detection with transformers", IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14, 2022.
[30] S. S. M. Salehi, D. Erdogmus and A. Gholipour, "Tversky loss function for image segmentation using 3D fully convolutional deep networks", Proc. Int. Workshop Mach. Learn. Med. Imag., pp. 379-387, 2017.
[31] T. Lin, P. Goyal, R. B. Girshick, K. He and P. Dollár, "Focal loss for dense object detection", Proc. IEEE Int. Conf. Comput. Vis., pp. 2999-3007, 2017. |