博碩士論文 109522050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.221.238.5
姓名 叢伯蘭(Po-Lan Tsung)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 孿生變化檢測網路結合注意力機制及多尺度特徵之空拍和遙測影像檢測模型
(Siamese Networks with Attention Mechanism and Multiscale Features for Aerial and Remote Sensing Images Change Detection)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-18以後開放)
摘要(中) 隨著衛星及空拍機軟硬體上的技術發展,想要取得高解析度的遙測影像資料越來越容易,也促使遙測影像有著眾多的相關研究及應用,而變化檢測(Change Detection)則是其中一項重要的研究議題,以往的方法大致分為像素(piexl-based)和物件(object-based)兩種,運用演算法、統計分析(PCA)或是機器學習分類器等,但上述方法容易受到背景雜訊、偵測目標大小等因素所影響。
近年來深度學習技術被廣泛運用在變化檢測的各項應用上,本篇論文提出一個孿生的變化檢測網路用於遙測、空拍影像內的建築物變化檢測,以辨識建建築物是否新建或拆除,模型以編碼器及解碼器當作基礎架構,結合通道注意力(Channel Attention)、空間注意力(Spatial Attention)及自我交叉注意力(Self and Cross Attention)等機制,並在編碼器的骨幹網路設計多尺度特徵融合,輸出二值化結果圖。
本論文模型可以端到端訓練,輸入不同時段拍攝之兩張圖片後得到變化圖(change map),選擇LEVIR-CD、WHU及CDD三種不同區域遙測及空拍影像資料集做為實驗訓練及測試使用,並以精確率、招回率、F1 Score、總體準確率及交併比當作驗證指標,相比其他方法皆有較佳的分數結果。
摘要(英) With the advance of satellite and aerial camera technology, obtaining high resolution remote sensing and aerial images is getting easier. Change detection is one of the important topics in numerous studies and applications of remote sensing. Previous methods are roughly divided into two types, pixel-based and object-based. These methods include thresholding algorithms, statistical analysis like PCA, machine learning classifiers, etc. But the methods mentioned above are easily affected by background noises or the sizes of detected objects, which lead to unsatisfying outcomes.
We propose a siamese network for building change detection in the remote sensing and aerial images. The goal is to identify whether the building is new or has already been demolished. The proposed network takes two images taken at different times as its input and output a binary change map. The model is based on an encoder and decoder architecture, with channel attention, spatial attention, self and cross attention mechanisms. We use multiscale feature fusion in the feature extraction backbone module. The network is trained in an end-to-end method.
In the experiments, we select LEVIR-CD, WHU and CDD datasets for training and testing. We use precision, recall, overall accuracy, F1 score, and IoU as model evaluation metrics. Our results show better performance compared to other state-of-the-art methods.
關鍵字(中) ★ 變化檢測
★ 孿生神經網路
★ 注意力機制
★ 特徵融合
關鍵字(英) ★ Change Detection
★ Siamese Network
★ Attention Mechanism
★ Multiscale Features Fusion
論文目次 摘要---I
Abstract---II
致謝---III
目錄---IV
圖目錄---VI
表目錄---VII
第一章 緒論---1
1.1 研究背景與動機---1
1.2 論文架構---2
第二章 文獻回顧---3
2.1 重要架構---3
2.1.1 EfficientNet[8]---3
2.1.2 孿生神經網路---4
2.1.3 Unet[15] (Encoder-Decoder)---5
2.1.4 Convlution Block Attention Module(CBAM)[7]---6
2.1.5 Self-Attention(Position Attention)---7
2.2 文獻探討---7
2.2.1 孿生變化檢測網路---7
2.2.2 CosimNet[18]---8
2.2.3 變化檢測網路結合注意力機制---9
2.2.4 多尺度特徵融合---10
第三章 研究方法---11
3.1 實驗資料集---11
3.1.1 LEVIR-CD 11
3.1.2 CDD---12
3.1.3 WHU---13
3.2 模型架構---14
3.2.1 編碼器(Encoder)---17
3.2.2 解碼器(Decoder)---20
3.3 損失函數---23
3.3.1 Dice & Tversky Loss---23
3.3.2 BCE & Focal Loss---24
第四章 實驗結果---25
4.1 設備環境與參數設置---25
4.2 資料集前處理---26
4.3 驗證指標---27
4.3.1 精確率(Precision)、招回率(Recall)---27
4.3.2 F1 score---28
4.3.3 OA(Overall Accuracy)---28
4.3.4 IoU(Intersection over Union)---29
4.4 實驗比較結果---30
4.5 消融實驗---37
第五章 結論與未來研究方向---39
參考文獻---40
參考文獻 [1] P. Rosin and E. Ioannidis, "Evaluation of global image thresholding for change detection", Pattern Recognit. Lett., vol. 24, no. 14, pp. 2345-2356, Oct. 2003.

[2] P. Rosin, "Thresholding for change detection", Proc. IEEE Int. Conf. Computer Vision, pp. 274-279, 1998-Jan.

[3] R. Vázquez-Jiménez, R. N. Ramos-Bernal, R. Romero-Calcerrada, P. Arrogante-Funes, S. S. Tizapa and C. J. Novillo, "Thresholding algorithm optimization for change detection to satellite imagery" in Colorimetry Image Processing, Rijeka, Croatia:InTech, 2018.

[4] Y. Zhang, D. Peng and X. Huang, "Object-based change detection for VHR images based on multiscale uncertainty analysis", IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 13-17, Jan. 2018.

[5] K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao and P. Du, "Automatic change detection in high-resolution remote sensing images by using a multiple classifier system and spectral–spatial features", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3439-3451, Aug. 2016.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., "Attention Is All You Need", CoRR, vol. abs/1706.03762, 2017.

[7] S. Woo, J. Park, J.-Y. Lee and I. S. Kweon, "CBAM: Convolutional block attention module", Proc. Eur. Conf. Comput. Vis. (ECCV), pp. 8-14, Sep. 2018.

[8] M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", Proc. 36th Int. Conf. Mach. Learn., pp. 6105-6114, 2019.

[9] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition", 2015.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database", Proc. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 248-255, 2009.

[11] CIFAR-10 dataset, https://www.cs.toronto.edu/~kriz/cifar.html

[12] B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning", arXiv:1611.01578, 2016, [online] Available: https://arxiv.org/abs/1611.01578.

[13] M. Tan et al., "MnasNet: Platform-aware neural architecture search for mobile", arXiv:1807.11626, 2018, [online] Available: https://arxiv.org/abs/1807.11626.

[14] A. G. Howard et al., MobileNets: Efficient convolutional neural networks for mobile vision applications, Apr. 2017, [online] Available: https://arxiv.org/abs/1704.04861.

[15] O. Ronneberger, P. Fischer and T. Brox, "U-net: Convolutional networks for biomedical image segmentation", Proc. Med. Image Comput. Comput.-Assisted Intervention, pp. 234-241, 2015.

[16] J. Fu et al., "Dual attention network for scene segmentation", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3141-3149, 2019.

[17] R. C. Daudt, B. Le Saux and A. Boulch, "Fully convolutional Siamese networks for change detection", Proc. 25th IEEE Int. Conf. Image Process., pp. 4063-4067, 2018.

[18] E. Guo et al., "Learning to measure change: Fully convolutional Siamese metric networks for scene change detection", arXiv:1810.09111, 2018.

[19] H. Chen and Z. Shi, "A spatial-temporal attention-based method and a new dataset for remote sensing image change detection", Remote Sens., vol. 12, no. 10, pp. 1662, May 2020.

[20] H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid scene parsing network", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6230-6239, 2017.

[21] L. Di, W. Liejun, C. Shuli, L. Yongming, and D. C. A. N. Anyu, “A combined attention network for remote sensing image change detection,” Information, vol. 12, pp. 1–16, 2021.


[22] S. W. Zamir et al., "Multi-stage progressive image restoration", Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp. 1-11, Feb. 2021.

[23] A. Varghese, J. Gubbi, A. Ramaswamy and P. Balamuralidhar, "ChangeNet: A deep learning architecture for visual change detection", Proc. Eur. Conf. Comput. Vis., pp. 129-145, 2018.

[24] Sung-Jin Cho, Seo-Won Ji and Jun-Pyo Hong, "Seung-Won Jung and Sung-Jea Ko. Rethinking Coarse-to-Fine Approach in Single Image Deblurring", ICCV, 2021.

[25] LEVIR-CD,圖片來源取自:https://justchenhao.github.io/LEVIR/

[26] M. Lebedev, Y. V. Vizilter, O. Vygolov, V. Knyaz and A. Y. Rubis, "Change detection in remote sensing images using conditional adversarial networks", Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci., vol. 42, no. 2, pp. 565-571, 2018.

[27] S. Ji, S. Wei and M. Lu, "Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set", IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574-586, Jan. 2019.

[28] F. Milletari, N. Navab and S.-A. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation", Proc. 4th Int. Conf. 3D Vis. (3DV), pp. 565-571, Oct. 2016.

[29] H. Chen, Z. Qi and Z. Shi, "Remote sensing image change detection with transformers", IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-14, 2022.

[30] S. S. M. Salehi, D. Erdogmus and A. Gholipour, "Tversky loss function for image segmentation using 3D fully convolutional deep networks", Proc. Int. Workshop Mach. Learn. Med. Imag., pp. 379-387, 2017.

[31] T. Lin, P. Goyal, R. B. Girshick, K. He and P. Dollár, "Focal loss for dense object detection", Proc. IEEE Int. Conf. Comput. Vis., pp. 2999-3007, 2017.
指導教授 鄭旭詠 謝君偉(Hsu-Yung Cheng Jun-Wei Hsieh) 審核日期 2022-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明