參考文獻 |
262588213843476. (n.d.). Word_piece_example.md. Gist. Retrieved April 26, 2022, from https://gist.github.com/jamescalam/7e3f69d6a68d6f3ad7fd8bb58bf87a5f
Bevilacqua, M., Pasini, T., Raganato, A., & Navigli, R. (2021). Recent Trends in Word Sense Disambiguation: A Survey. Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 4330–4338. https://doi.org/10.24963/ijcai.2021/593
Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(Database issue), D267–D270. https://doi.org/10.1093/nar/gkh061
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. http://arxiv.org/abs/1810.04805
Finley, G. P., Pakhomov, S. V. S., McEwan, R., & Melton, G. B. (2017). Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data. AMIA Annual Symposium Proceedings, 2016, 560–569.
Grossman Liu, L., Grossman, R. H., Mitchell, E. G., Weng, C., Natarajan, K., Hripcsak, G., & Vawdrey, D. K. (2021). A deep database of medical abbreviations and acronyms for natural language processing. Scientific Data, 8(1), 149. https://doi.org/10.1038/s41597-021-00929-4
Huang, L., Sun, C., Qiu, X., & Huang, X. (2020). GlossBERT: BERT for Word Sense Disambiguation with Gloss Knowledge. ArXiv:1908.07245 [Cs]. http://arxiv.org/abs/1908.07245
Iacobacci, I., Pilehvar, M. T., & Navigli, R. (2016). Embeddings for Word Sense Disambiguation: An Evaluation Study. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 897–907. https://doi.org/10.18653/v1/P16-1085
Jimeno Yepes, A. (2017). Word embeddings and recurrent neural networks based on Long- Short Term Memory nodes in supervised biomedical word sense disambiguation. Journal of Biomedical Informatics, 73, 137–147. https://doi.org/10.1016/j.jbi.2017.08.001
Jimeno-Yepes, A. J., & Aronson, A. R. (2010). Knowledge-based biomedical word sense disambiguation: Comparison of approaches. BMC Bioinformatics, 11(1), 569. https://doi.org/10.1186/1471-2105-11-569
Jimeno-Yepes, A. J., McInnes, B. T., & Aronson, A. R. (2011). Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation. BMC Bioinformatics, 12(1), 223. https://doi.org/10.1186/1471-2105-12-223
Jin, Q., Liu, J., & Lu, X. (2019). Deep Contextualized Biomedical Abbreviation Expansion. ArXiv:1906.03360 [Cs, q-Bio]. http://arxiv.org/abs/1906.03360 Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M.,
Moody, B., Szolovits, P., Anthony Celi, L., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1), 160035. https://doi.org/10.1038/sdata.2016.35
Joopudi, V., Dandala, B., & Devarakonda, M. (2018). A convolutional route to abbreviation disambiguation in clinical text. Journal of Biomedical Informatics, 86, 71–78. https://doi.org/10.1016/j.jbi.2018.07.025
Kim, J., Gong, L., Khim, J., Weiss, J. C., & Ravikumar, P. (2020). Improved Clinical Abbreviation Expansion via Non-Sense-Based Approaches. Proceedings of the Machine Learning for Health NeurIPS Workshop, 161–178. https://proceedings.mlr.press/v136/kim20a.html
Komeda, Y., Handa, H., Watanabe, T., Nomura, T., Kitahashi, M., Sakurai, T., Okamoto, A., Minami, T., Kono, M., Arizumi, T., Takenaka, M., Hagiwara, S., Matsui, S., Nishida, N., Kashida, H., & Kudo, M. (2017). Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience. Oncology, 93(1), 30–34. https://doi.org/10.1159/000481227
Li, I., Yasunaga, M., Nuzumlalı, M. Y., Caraballo, C., Mahajan, S., Krumholz, H., & Radev, D. (2019). A Neural Topic-Attention Model for Medical Term Abbreviation Disambiguation. ArXiv:1910.14076 [Cs]. http://arxiv.org/abs/1910.14076
Lin, G.-T., & Giambi, M. (2021). Context-gloss Augmentation for Improving Word Sense Disambiguation (arXiv:2110.07174). arXiv. http://arxiv.org/abs/2110.07174
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
Moon, S., Pakhomov, S., Liu, N., Ryan, J. O., & Melton, G. B. (2014). A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources. Journal of the American Medical Informatics Association: JAMIA, 21(2), 299–307. https://doi.org/10.1136/amiajnl-2012-001506
Moon, S., Pakhomov, S., & Melton, G. B. (2012). Automated Disambiguation of Acronyms and Abbreviations in Clinical Texts: Window and Training Size Considerations. AMIA Annual Symposium Proceedings, 2012, 1310–1319.
Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. Proceedings of the 18th BioNLP Workshop and Shared Task, 319–327. https://doi.org/10.18653/v1/W19- 5034
Oleynik, M., Kreuzthaler, M., & Schulz, S. (2017). Unsupervised Abbreviation Expansion in Clinical Narratives. Studies in Health Technology and Informatics, 245, 539–543.
Pal, A. R., & Saha, D. (2015). Word sense disambiguation: A survey. International Journal
of Control Theory and Computer Modeling, 5(3), 1–16.
https://doi.org/10.5121/ijctcm.2015.5301
Park, H. J., Kim, S. M., La Yun, B., Jang, M., Kim, B., Jang, J. Y., Lee, J. Y., & Lee, S. H.
(2019). A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist. Medicine, 98(3), e14146. https://doi.org/10.1097/MD.0000000000014146
Peng, Y., Yan, S., & Lu, Z. (2019). Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. ArXiv:1906.05474 [Cs]. http://arxiv.org/abs/1906.05474
Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. https://doi.org/10.3115/v1/D14-1162
Pesaranghader, A., Matwin, S., Sokolova, M., & Pesaranghader, A. (2019). deepBioWSD: Effective deep neural word sense disambiguation of biomedical text data. Journal of the American Medical Informatics Association: JAMIA, 26(5), 438–446. https://doi.org/10.1093/jamia/ocy189
Raganato, A., Delli Bovi, C., & Navigli, R. (2017). Neural Sequence Learning Models for Word Sense Disambiguation. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 1156–1167. https://doi.org/10.18653/v1/D17-1120
Rosruen, N., & Samanchuen, T. (2018). Chatbot Utilization for Medical Consultant System. 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-ICON), 1–5. https://doi.org/10.1109/TIMES- iCON.2018.8621678
Sabbir, A., Jimeno-Yepes, A., & Kavuluru, R. (2016). Knowledge-Based Biomedical Word Sense Disambiguation with Neural Concept Embeddings and Distant Supervision.
Sabbir, A., Jimeno-Yepes, A., & Kavuluru, R. (2017). Knowledge-Based Biomedical Word Sense Disambiguation with Neural Concept Embeddings. Proceedings. IEEE International Symposium on Bioinformatics and Bioengineering, 2017, 163–170. https://doi.org/10.1109/BIBE.2017.00-61
Sato, Y., Takegami, Y., Asamoto, T., Ono, Y., Hidetoshi, T., Goto, R., Kitamura, A., & Honda, S. (2020). A Computer-Aided Diagnosis System Using Artificial Intelligence for Hip Fractures -Multi-Institutional Joint Development Research-. ArXiv:2003.12443 [Physics, q-Bio]. http://arxiv.org/abs/2003.12443
Schuster, M., & Nakajima, K. (2012). Japanese and Korean voice search. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
5149–5152. https://doi.org/10.1109/ICASSP.2012.6289079
Skreta, M., Arbabi, A., Wang, J., Drysdale, E., Kelly, J., Singh, D., & Brudno, M. (2021).
Automatically disambiguating medical acronyms with ontology-aware deep learning. Nature Communications, 12, 5319. https://doi.org/10.1038/s41467-021- 25578-4
Tariq, R. A., & Sharma, S. (2021). Inappropriate Medical Abbreviations. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK519006/
Wang, Y., Zheng, K., Xu, H., & Mei, Q. (2017). Clinical Word Sense Disambiguation with Interactive Search and Classification. AMIA Annual Symposium Proceedings, 2016, 2062–2071.
Wu, Y., Denny, J. C., Rosenbloom, S. T., Miller, R. A., Giuse, D. A., Song, M., & Xu, H. (2015). A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time. Applied Clinical Informatics, 6(2), 364–374. https://doi.org/10.4338/ACI-2014-10- RA-0088
Wu, Y., Denny, J. C., Trent Rosenbloom, S., Miller, R. A., Giuse, D. A., Wang, L., Blanquicett, C., Soysal, E., Xu, J., & Xu, H. (2017). A long journey to short abbreviations: Developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). Journal of the American Medical Informatics Association : JAMIA, 24(e1), e79–e86. https://doi.org/10.1093/jamia/ocw109
Wu, Y., Tang, B., Jiang, M., Moon, S., Denny, J. C., & Xu, H. (2013). Clinical Acronym/Abbreviation Normalization using a Hybrid Approach. Working Notes for CLEF 2013 Conference , Valencia, Spain, September 23-26, 2013. http://ceur- ws.org/Vol-1179/CLEF2013wn-CLEFeHealth-WuEt2013.pdf
Wu, Y., Xu, J., Zhang, Y., & Xu, H. (2015). Clinical Abbreviation Disambiguation Using Neural Word Embeddings. Proceedings of BioNLP 15, 171–176. https://doi.org/10.18653/v1/W15-3822
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2020). XLNet: Generalized Autoregressive Pretraining for Language Understanding. ArXiv:1906.08237 [Cs]. http://arxiv.org/abs/1906.08237
Yap, B. P., Koh, A., & Chng, E. S. (2020). Adapting BERT for Word Sense Disambiguation with Gloss Selection Objective and Example Sentences (arXiv:2009.11795). arXiv. http://arxiv.org/abs/2009.11795
Zhang, Y., Chen, Q., Yang, Z., Lin, H., & Lu, Z. (2019). BioWordVec, improving biomedical word embeddings with subword information and MeSH. Scientific Data, 6, 52. https://doi.org/10.1038/s41597-019-0055-0 |