博碩士論文 109423065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.145.163.51
姓名 林承翰(Cheng-Han Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 運用社群媒體發文、留言、轉貼探討COVID-19假新聞辨識之研究
(A study on detecting COVID-19 fake news by using posts, comments, reposts on social media)
相關論文
★ 技術商品銷售之技術人員關鍵職能探討★ 資訊委外之承包商能力、信任及溝通與委外成效關係之個案研究
★ 兵工技術軍官職能需求分析-以某軍事工廠為例★ 不同楷模學習模式對VB程式語言學習之影響
★ 影響採購「網路資料中心產品」因素之探討★ 資訊人員績效評估之研究—以陸軍某資訊單位為例
★ 高職資料處理科學生網路成癮相關因素及其影響之探討★ 資訊服務委外對資訊部門及人員之衝擊-某大型外商公司之個案研究
★ 二次導入ERP系統之研究-以某個案公司為例★ 資料倉儲於證券產業應用之個案研究
★ 影響消費者採用創新數位產品之因素---以整合式手機為例★ 企業合併下資訊系統整合過程之個案研究
★ 資料倉儲系統建置之個案研究★ 電子表單系統導入之探討 - 以 A 公司為例
★ 企業資訊安全機制導入與評估–以H公司為例★ 從人力網站探討國內資訊人力現況–以104銀行資料為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-15以後開放)
摘要(中) 隨著 COVID-19 疫情爆發以來,很多國家為了防止疫情擴散進行封城管制。 人們待在家裡減少不必要的外出,來避免染疫的風險,原本實體的社交活動改成 在線上社群媒體上進行,也透過社群媒體來了解與疫情相關的資訊。但是很多的 資訊是未經查證,卻因為社群媒體的特徵被輕易傳播,導致 COVID-19 假新聞在 各大社群平台上蔓延開來。
目前社群媒體 COVID-19 假新聞辨識研究,大多數學者僅使用社群媒體貼文 的文本內容,來進行 COVID-19 假新聞辨識,較少學者以貼文底下的留言內容, 或者是轉貼貼文內容作為特徵。另外,目前主要訓練 COVID-19 假新聞辨識模型 的語料資料集都是以英文為主的社群平台,如 Twitter,缺乏中文語料資料集。因 此本研究將使用文字探勘技術,提取中國知名社群媒體新浪微博上與疫情相關的 貼文文本特徵,貼文底下留言的內容特徵,與轉貼貼文的內容特徵,並使用貝氏 分類器、邏輯斯迴歸、隨機森林、支援向量機等機器學習方式,以建構 COVID- 19 假新聞辨識模型。最後實驗結果顯示,模型結合貼文內容、留言內容、轉貼內 容等特徵進行訓練,可以達到更好的模型辨識準確率。
摘要(英) With the outbreak of the COVID-19, many countries around the world have gone into lockdown to prevent the spread of the epidemic. People stay at home and reduce unnecessary going out to avoid the risk of infection. The physical social activities were changed to online social media, and information related to the epidemic was also obtained through social media. However, a lot of information was not verified, but was easily spread through the characteristics of social media, leading to COVID-19 fake news spread on major online social platforms.
At present, most scholars only use the content of social media posts to detect COVID-19 fake news, and few scholars consider the content of social media comments, or the content of social media reposts. Additionally, the corpus mainly used for training COVID-19 fake news detection models are mostly English-based social platforms such as Twitter in most study, there are few corpus used in Chinese languages. Therefore, this study will use text mining technology to extract the content of posts related to the epidemic on Sina Weibo, a well-known social media in China, the content of comments, and the content of reposts, and use machine learning methods like Bayesian classifier, logistic regression, random forest, support vector machine to build COVID-19 fake news detection models. The final experimental results show that the model can achieve better model detection accuracy by combining the content of posts, the content of comments, and the content of reposts.
關鍵字(中) ★ COVID-19 假新聞辨識
★ 機器學習
★ 文字探勘
關鍵字(英) ★ COVID-19 fake news detection
★ machine learning
★ text mining
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3 研究目的 3
第二章 文獻探討 5
2.1假新聞 5
2.2偵測社群媒體 COVID-19 假新聞 13
第三章 研究方法 17
3.1 資料來源 17
3.2 資料前處理 19
3.3 變量定義 21
3.4 資料探勘分析技術 21
3.5 實驗設計 24
3.6 資料驗證與評估指標 26
第四章節 實驗結果與分析 30
4.1 實驗一結果與分析 30
4.2 實驗二結果與分析 32
4.3 實驗三結果與分析 35
4.4 實驗結果整體分析 37
4.5 模型特徵權重 38
第五章 研究結論與建議 43
5.1 研究結論 43
5.2 研究限制 44
5.3 未來方向與建議 44
5.4 研究貢獻 44
參考文獻 46
附錄一 51
附錄二 53
參考文獻 Al-Rakhami, M. S., & Al-Amri, A. M. (2020). Lies kill, facts save: detecting COVID-19 misinformation in twitter. Ieee access, 8, 155961-155970.
Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of economic perspectives, 31(2), 211-236.
Anand, K., Karade, S., Sen, S., & Gupta, R. (2020). SARS-CoV-2: camazotz′s curse. Medical journal armed forces india, 76(2), 136-141.
Baym, G. (2005). The Daily Show: Discursive integration and the reinvention of political journalism. Political communication, 22(3), 259-276.
Berkowitz, D., & Schwartz, D. A. (2016). Miley, CNN and The Onion: When fake news becomes realer than real. Journalism practice, 10(1), 1-17.
Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 US presidential election online discussion. First Monday, 21(11-7).
Breeanna, H. (2013). Miley Cyrus twerks, stuns VMAs crowd. CNN. Available online at https://edition.cnn.com/2013/08/26/showbiz/music/miley-cyrus-mtv-vmas-gaga/index.html (accessed June 16, 2020)
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brewer, N. T., Weinstein, N. D., Cuite, C. L., & Herrington, J. E. (2004). Risk perceptions and their relation to risk behavior. Annals of behavioral medicine, 27(2), 125-130.
Brewer, P. R., Young, D. G., & Morreale, M. (2013). The impact of real news about “fake news”: Intertextual processes and political satire. International journal of public opinion research, 25(3), 323-343.
Cambridge, U. (2020). Cambridge advanced learner′s dictionary & thesaurus.
Carpenter, S. (2010). A study of content diversity in online citizen journalism and online newspaper articles. New media & society, 12(7), 1064-1084.
Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, developing, and divining. Atlantic journal of communication, 23(1), 46-65.
Constine, J. (2020). Facebook Deletes Brazil President’s Coronavirus Misinfo Post. Tech Crunch. Available online at https://techcrunch.com/2020/03/30/facebook-removes-bolsonaro-video/ (accessed June 16, 2020)
Cook, J., Van Der Linden, S., Lewandowsky, S., & Ecker, U. K. (2020). Coronavirus, Plandemic and the seven traits of conspiratorial thinking. Available online at https://theconversation.com/coronavirus-plandemic-and-the-seven-traits-of-conspiratorial-thinking-138483 (accessed June 16, 2020)
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
Deziel, M. (2014). Women inmates: Why the male model doesn’t work. The New York Times. Available online at
https://www.nytimes.com/paidpost/netflix/women-inmates-separate-but-not- equal.html (accessed June 16, 2020)
Elhadad, M. K., Li, K. F., & Gebali, F. (2020). Detecting misleading information on covid-19. Ieee access, 8, 165201-165215.
Gao, Z., Yada, S., Wakamiya, S., & Aramaki, E. (2020). Naist covid: Multilingual covid-19 twitter and weibo dataset. arXiv preprint arXiv:2004.08145.
Geleris, J., Sun, Y., Platt, J., Zucker, J., Baldwin, M., Hripcsak, G., Labella, A., Manson, D. K., Kubin, C., & Barr, R. G. (2020). Observational study of hydroxychloroquine in hospitalized patients with Covid-19. New england journal of medicine, 382(25), 2411-2418.
Gelfert, A. (2018). Fake news: A definition. Informal logic, 38(1), 84-117.
goto456. (2020). 百度停用词表 Available online at https://github.com/goto456/stopwords (accessed June 16, 2020)
Imhoff, R., & Lamberty, P. (2020). A bioweapon or a hoax? The link between distinct conspiracy beliefs about the Coronavirus disease (COVID-19) outbreak and pandemic behavior. Social psychological and personality science, 11(8), 1110-1118.
Islam, M. S., Sarkar, T., Khan, S. H., Kamal, A.-H. M., Hasan, S. M., Kabir, A., Yeasmin, D., Islam, M. A., Chowdhury, K. I. A., & Anwar, K. S. (2020). COVID-19–related infodemic and its impact on public health: A global social media analysis. The American journal of tropical medicine and hygiene, 103(4), 1621.
Jamieson, K. H., & Cappella, J. N. (2008). Echo chamber: Rush Limbaugh and the conservative media establishment. Oxford University Press.
Jang, Y., Park, C. H., & Seo, Y. S. (2019). Fake news analysis modeling using quote retweet. Electronics, 8(12), 1377.
Jin, Z., Cao, J., Zhang, Y., & Luo, J. (2016). News verification by exploiting conflicting social viewpoints in microblogs. In Proceedings of the AAAI conference on artificial intelligence 30(1)
Kar, D., Bhardwaj, M., Samanta, S., & Azad, A. P. (2020). No rumours please! a multi-indic-lingual approach for COVID fake-tweet detection. In 2021 Grace Hopper Celebration India (GHCI) (pp. 1-5). IEEE.
Kim, Y. (2019). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., & Rothschild, D. (2018). The science of fake news. Science, 359(6380), 1094-1096.
Leung, K. M. (2007). I bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering, 123-156.
Levy, N. (2017). The bad news about fake news. Social epistemology review and reply collective, 6(8), 20-36.
Maheshwari, S. (2016). How fake news goes viral: A Case Study, The New York Times. Available online at https://www.nytimes.com/2016/11/20/business/media/how-fake-news-spreads.html (accessed June 16, 2020)
Mahlous, A. R., & Al-Laith, A. (2021). Fake news detection in Arabic tweets during the COVID-19 pandemic. International journal of advanced computer science and applications, 12(6).
Mitchell, A., & Oliphant, J. B. (2020). Americans immersed in COVID-19 news; most think media are doing fairly well covering it. Pew research center. Available online at https://www.pewresearch.org/journalism/2020/03/18/americans-immersed-in-covid-19-news-most-think-media-are-doing-fairly-well-covering-it/ (accessed June 16, 2020)
Niu, M., Li, Y., Wang, C., & Han, K. (2018). RFAmyloid: a web server for predicting amyloid proteins. International journal of molecular sciences, 19(7), 2071.
Onion, T. (2013). Let me explain why Miley Cyrus’ VMA performance was our top story this morning. The Onion. Available online at https://www.theonion.com/let-me-explain-why-miley-cyrus-vma-performance-was-our-1819584893 access date (accessed June 16, 2020)
Onion, T. (2017). About the Onion. The Onion. Available online at
https://www.theonion.com/the-onion-is-the-world-s-leading-news- publication-offe-1819653457 (accessed June 16, 2020)
Paka, W. S., Bansal, R., Kaushik, A., Sengupta, S., & Chakraborty, T. (2021). Cross-SEAN: A cross-stitch semi-supervised neural attention model for COVID-19 fake news detection. Applied soft computing, 107, 107393.
Patwa, P., Sharma, S., Pykl, S., Guptha, V., Kumari, G., Akhtar, M. S., Ekbal, A., Das, A., & Chakraborty, T. (2021). Fighting an infodemic: Covid-19 fake news dataset. In International workshop on combating online hostile posts in regional languages during emergency situation.(pp. 21-29).
Paul, C., & Matthews, M. (2016). The Russian “firehose of falsehood” propaganda model. Rand corporation, 2(7), 1-10.
Quattrociocchi, W., Scala, A., & Sunstein, C. R. (2016). Echo chambers on Facebook. Available at SSRN 2795110.
Sanders, L. (2020). The difference between what Republicans and Democrats believe to be true about COVID-19. Available online at: https://today.yougov.com/topics/politics/articles-reports/2020/05/26/republicans-democrats-misinformation (accessed June 16, 2020)
Serrano, J. C. M., Papakyriakopoulos, O., & Hegelich, S. (2020). NLP-based feature extraction for the detection of COVID-19 misinformation videos on YouTube. In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL 2020.
Shearer, E. (2018). Social media outpaces print newspapers in the US as a news source. Pew research center, 10, 12.
Shu, K., Cui, L., Wang, S., Lee, D., & Liu, H. (2019, July). defend: Explainable fake news detection. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 395-405).
Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2018). Fakenewsnet: A data repository with news content, social context and spatialtemporal information for studying fake news on social media. arXiv preprint arXiv:1809.01286.
Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: A data mining perspective. ACM SIGKDD explorations newsletter, 19(1), 22-36.
Shu, K., Zhou, X., Wang, S., Zafarani, R., & Liu, H. (2019, August). The role of user profiles for fake news detection. In Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining (pp. 436-439).
Steenkamp, M., & Hyde-Clarke, N. (2014). The use of Facebook for political commentary in South Africa. Telematics and informatics, 31(1), 91-97.
Su, Z., McDonnell, D., Wen, J., Kozak, M., Abbas, J., Šegalo, S., Li, X., Ahmad, J., Cheshmehzangi, A., & Cai, Y. (2021). Mental health consequences of COVID-19 media coverage: the need for effective crisis communication practices. Globalization and health, 17(1), 1-8.
Subramanian, S. (2017). Inside the Macedonian fake-news complex. Wired magazine, 15.
Talwar, S., Dhir, A., Kaur, P., Zafar, N., & Alrasheedy, M. (2019). Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. Journal of retailing and consumer services, 51, 72-82.
Tandoc Jr, E. C., Lim, Z. W., & Ling, R. (2018). Defining “fake news” A typology of scholarly definitions. Digital journalism, 6(2), 137-153.
Tankovska, H. (2021). Number of social media users worldwide from 2018 to 2027. Available online at https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (accessed June 16, 2020)
Ullah, A. R., Das, A., Das, A., Kabir, M. A., & Shu, K. (2021). A survey of COVID-19 misinformation: datasets, detection techniques and open issues. arXiv preprint arXiv:2110.00737.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., ... & Gao, J. (2018, July). Eann: Event adversarial neural networks for multi-modal fake news detection. In Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining (pp. 849-857)
Waisanen, D. J. (2011). Crafting hyperreal spaces for comic insights: The Onion News Network′s ironic iconicity. Communication Quarterly, 59(5), 508-528.
Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., & DATA, M. (2005). Practical machine learning tools and techniques. In DATA MINING, 2(4).
Wright, R. E. (1995). Logistic regression. Reading and understanding multivariate statistics, 217–244.
Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., & Majeed, A. (2020). Impact of COVID-19 pandemic on mental health in the general population: A systematic review. Journal of affective disorders, 227, 55-64
Yamey, G., & Gonsalves, G. (2020). Donald Trump: a political determinant of covid-19. British Medical Journal, 369 .
Yang, C., Zhou, X., & Zafarani, R. (2021). CHECKED: Chinese COVID-19 fake news dataset. Social network analysis and mining, 11(1), 1-8.
Zarocostas, J. (2020). How to fight an infodemic. The lancet, 395(10225), 676.
Zubiaga, A., & Ji, H. (2014). Tweet, but verify: epistemic study of information verification on twitter. Social network analysis and mining, 4(1), 1-12.
Zhao, Z., Zhao, J., Sano, Y., Levy, O., Takayasu, H., Takayasu, M., ... & Havlin, S. (2020). Fake news propagates differently from real news even at early stages of spreading. EPJ data science, 9(1), 7.
指導教授 周惠文 審核日期 2022-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明