博碩士論文 109423034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.147.140.129
姓名 黃閔慈(Min-Tzu Hwang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 遺漏值於類別不平衡問題之研究
(Missing Values in Class Imbalanced Datasets)
相關論文
★ 利用資料探勘技術建立商用複合機銷售預測模型★ 應用資料探勘技術於資源配置預測之研究-以某電腦代工支援單位為例
★ 資料探勘技術應用於航空業航班延誤分析-以C公司為例★ 全球供應鏈下新產品的安全控管-以C公司為例
★ 資料探勘應用於半導體雷射產業-以A公司為例★ 應用資料探勘技術於空運出口貨物存倉時間預測-以A公司為例
★ 使用資料探勘分類技術優化YouBike運補作業★ 特徵屬性篩選對於不同資料類型之影響
★ 資料探勘應用於B2B網路型態之企業官網研究-以T公司為例★ 衍生性金融商品之客戶投資分析與建議-整合分群與關聯法則技術
★ 應用卷積式神經網路建立肝臟超音波影像輔助判別模型★ 基於卷積神經網路之身分識別系統
★ 能源管理系統電能補值方法誤差率比較分析★ 企業員工情感分析與管理系統之研發
★ 資料淨化於類別不平衡問題: 機器學習觀點★ 資料探勘技術應用於旅客自助報到之分析—以C航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現實世界的資料集難以避免地會有遺漏值 (Missing Values),然而若無經過 適當的處理,多數的傳統分類器無法直接運行外,更可能產生錯誤的資料探勘 結果。此外,類別不平衡問題 (Class Imbalance)亦是資料探勘領域中的重要議題, 然而傳統分類器基於類別平衡的假設下而傾向於忽略小類樣本,導致模型正確 預測小類樣本的效能不佳。
基於遺漏值和類別不平衡問題的普遍性,近年越來越多研究探討如何處理 帶有遺漏值的類別不平衡資料集,但仍鮮少有研究針對某一類別的資料,特別 是小類資料,帶有較多遺漏值的情況進行探討。此外,在遺漏值填補和資料層 級方式 (Data Level) 皆可能影響原始資料分佈的前提下,現有文獻並無探討面對 類別不平衡資料集帶有遺漏值時,執行遺漏值填補與資料層級方式 (Data level) 的先後順序對於補值效能和後續分類準確率之相關研究。
因此本研究針對小類訓練資料進行模擬遺漏,以比較三種處理流程搭配六 種補值法和 SMOTE 的表現,而處理流程中,除將順序調換外,亦於先補值處 理流程中另外提出僅以原始完整小類資料作為新生成小類樣本的基礎。實驗發 現,於多數遺漏率下,不同處理流程的順序於均方根誤差表現上具有顯著差異。 而分類準確率表現則隨著遺漏率高低而有所不同,於低遺漏率 (10~50%)時,採 取先補值的處理流程仍有顯著較佳的分類表現,而於高遺漏率 (70~90%)時,採 取先補值但僅以完整小類資料作為新生成小類樣本基礎的處理流程,於隨機森 林分類器有顯著較佳的分類準確率表現。此外,本研究亦針對不同需求,推薦 高、低遺漏率區間下表現較佳的處理流程和其搭配的補值法組合,以供未來研 究者參考。
摘要(英) In real-world datasets, missing values will inevitably occur. However, without appropriate treatments, most conventional machine learning models cannot tackle the missing values directly, and may even cause false results. In addition, the class imbalance is also a critical issue in machine learning and data mining. However, conventional machine learning models tend to ignore the minority class, which leads to degraded classification performances.
Due to the universality of missing values and class imbalance problems, in recent years, there are growing studies exploring how to deal with class imbalanced data with missing values. However, few studies have discussed the situation where a certain class of data, especially the minority class, has more missing values than the majority class. Moreover, based on the acknowledgment that missing value imputation and Data level approaches may change the distribution of the original data, there are few studies that discuss the implementation order of missing value imputation and Data level approaches when tackling class imbalanced data with missing values.
To this end, in this paper, we compare the performance of three processing procedures with six approaches of missing value imputation and SMOTE when the minority class of training data has more missing values. In the three processing procedures, in addition to changing the order, we also proposed to use only the complete training data subset of the minority class to serve as the basis for creating synthetic samples for the minority class.
The experimental results show that under most situations of missing rates, the order of different processing procedures has significant differences in the performance of RMSE. The performance of classification ability varies with the level of missing rate. When the missing rate is less than or equal to 50%, the processing procedure of imputing first has better classification performance, while the missing rate is higher than 50%, the processing procedure of imputing first and only uses the complete training data subset of the minority class to serve as the basis for creating synthetic samples for the minority class has a significantly better classification performance in the random forest classifier. Furthermore, we also recommend better performance processing procedures with the combination of missing value imputation approaches in the different levels of missing rate for future researchers′ reference.
關鍵字(中) ★ 遺漏值填補
★ 類別不平衡
★ 增加少數法
★ Class-specific missingness
關鍵字(英)
論文目次 摘要............................................................................................................................... ii Abstract ........................................................................................................................ iii 誌謝辭........................................................................................................................... v 目錄.............................................................................................................................. vi 表目錄 ........................................................................................................................ viii 圖目錄........................................................................................................................... x 一、緒論....................................................................................................................... 1
1-1、 研究背景..................................................................................................... 1 1-2、 研究動機..................................................................................................... 3 1-3、 研究目的..................................................................................................... 5 1-4、 研究架構..................................................................................................... 6
二、文獻探討............................................................................................................... 7 2-1、 遺漏值問題 (Missing values)..................................................................... 7 2-2、 遺漏值填補 (Missing value imputation) .................................................... 9
2-2-1、統計分析補值 (Statistical imputation) .......................................... 11
2-2-2、機器學習模型補值 (Machine learning based imputation) ............ 14 2-3、 類別不平衡問題....................................................................................... 16 2-4、 解決類別不平衡問題之方法................................................................... 18
2-4-1、資料層級 (Data level) .................................................................... 19 2-5、 相關文獻比較........................................................................................... 20 三、研究方法............................................................................................................. 26 3-1、 實驗架構................................................................................................... 26 3-2、 實驗環境................................................................................................... 26 3-2-1、硬體設備與軟體應用 .................................................................... 26 3-2-2、資料集 ............................................................................................ 26 3-3、 實驗環境和參數設定............................................................................... 28 3-3-1、統計分析補值 ................................................................................ 28 3-3-2、機器學習模型補值 ........................................................................ 30 3-3-3、增加少數法 (Over-sampling)......................................................... 31 3-3-4、分類器 ............................................................................................ 32 3-3-5、模擬遺漏和 SMOTE 次數設定..................................................... 33 3-4、 實驗流程................................................................................................... 36 3-4-1、資料集模擬遺漏 ............................................................................ 36 3-4-2、實驗流程 ........................................................................................ 37 3-4-3、效能評估 ........................................................................................ 41 四、實驗結果............................................................................................................. 43 4-1、 實驗結果: 均方根誤差 (RMSE) .............................................................. 44 4-1-1、均方根誤差: 綜觀分析 .................................................................. 44 4-1-2、均方根誤差: 各處理流程效能分析 .............................................. 45 4-1-3、均方根誤差: 各處理流程搭配各補值法效能分析 ...................... 47 4-1-4、討論: 視覺化分析 .......................................................................... 52
4-2、 實驗結果:分類準確率 (AUC) ................................................................. 55 4-2-1、分類準確率: 綜觀分析 .................................................................. 55 4-2-2、分類準確率: 各處理流程效能分析 .............................................. 58 4-2-3、分類準確率: 各處理流程搭配各補值法效能分析 ...................... 66
4-3、 實驗結論................................................................................................... 76 4-4、 敏感度分析............................................................................................... 80 4-4-1、均方根誤差: 綜觀分析 .................................................................. 80 4-4-2、均方根誤差: 各處理流程效能分析 .............................................. 81 4-4-3、均方根誤差: 各處理流程搭配各補值法效能分析 ...................... 83 4-4-4、分類準確率: 綜觀分析 .................................................................. 86 4-4-5、分類準確率: 各處理流程效能分析 .............................................. 88 4-4-6、分類準確率: 各處理流程搭配各補值法效能分析 ...................... 94 五、結論..................................................................................................................... 97 5-1、 總結與探討............................................................................................... 97 5-2、 研究貢獻及未來展望............................................................................... 99 參考文獻................................................................................................................... 102 附錄一、實驗詳細數據:均方根誤差................................................................... 108 附錄二、實驗詳細數據:分類準確率................................................................... 114 附錄三、實驗詳細數據:敏感度分析................................................................... 125
參考文獻 Aittokallio, T. (2010). Dealing with missing values in large-scale studies: Microarray data imputation and beyond. Briefings in Bioinformatics, 11(2), 253–264. https://doi.org/10.1093/bib/bbp059
Awan, S. E., Bennamoun, M., Sohel, F., Sanfilippo, F., & Dwivedi, G. (2021). Imputation of missing data with class imbalance using conditional generative adversarial networks. Neurocomputing, 453, 164–171. https://doi.org/10.1016/j.neucom.2021.04.010
Batista, G. E., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied artificial intelligence, 17(5-6), 519-533. https://doi.org/10.1080/713827181
Bertsimas, D., Pawlowski, C., & Zhuo, Y. D. (2017). From predictive methods to missing data imputation: an optimization approach. The Journal of Machine Learning Research, 18(1), 7133-7171.
Breiman, L. (2001a). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231. https://doi.org/10.1214/ss/1009213726
Breiman, L. (2001b). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. Taylor & Francis.
Burgette, L. F., & Reiter, J. P. (2010). Multiple Imputation for Missing Data via Sequential Regression Trees. American Journal of Epidemiology, 172(9), 1070– 1076. https://doi.org/10.1093/aje/kwq260
Buuren, S. van. (2018). Flexible Imputation of Missing Data, Second Edition. CRC Press.
Buuren, S. van, & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45, 1–67. https://doi.org/10.18637/jss.v045.i03
Cao, K., Wei, C., Gaidon, A., Arechiga, N., & Ma, T. (2019). Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. Advances in Neural Information Processing Systems, 32. https://doi.org/10.48550/arXiv.1906.07413
Cevallos Valdiviezo, H., & Van Aelst, S. (2015). Tree-based prediction on incomplete data using imputation or surrogate decisions. Information Sciences, 311, 163– 181. https://doi.org/10.1016/j.ins.2015.03.018
Cheng, C.-H., Kao, Y.-F., & Lin, H.-P. (2021). A financial statement fraud model based on synthesized attribute selection and a dataset with missing values and imbalanced classes. Applied Soft Computing, 108, 107487.
https://doi.org/10.1016/j.asoc.2021.107487
Das, S., Datta, S., & Chaudhuri, B. B. (2018). Handling data irregularities in
classification: Foundations, trends, and future challenges. Pattern Recognition,
81, 674–693. https://doi.org/10.1016/j.patcog.2018.03.008
Datta, S., Misra, D., & Das, S. (2016). A feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing features. Pattern Recognition Letters, 80, 231–237. https://doi.org/10.1016/j.patrec.2016.06.023 Denil, M., & Trappenberg, T. (2010, May). Overlap versus imbalance. In Canadian conference on artificial intelligence (pp. 220-231). Springer, Berlin, Heidelberg. Elreedy, D., & Atiya, A. F. (2019). A Comprehensive Analysis of Synthetic Minority
Oversampling Technique (SMOTE) for handling class imbalance. Information Sciences, 505, 32–64. https://doi.org/10.1016/j.ins.2019.07.070
Enders, C. K. (2010). Applied Missing Data Analysis. Guilford Press. Farajzadeh-Zanjani, M., Razavi-Far, R., & Saif, M. (2016, December). Efficient
sampling techniques for ensemble learning and diagnosing bearing defects under class imbalanced condition. In 2016 IEEE symposium series on computational intelligence (SSCI) (pp. 1-7). IEEE. https://doi.org/10.1109/SSCI.2016.7849879
Farhangfar, A., Kurgan, L., & Dy, J. (2008). Impact of imputation of missing values on classification error for discrete data. Pattern Recognition, 41(12), 3692–3705. https://doi.org/10.1016/j.patcog.2008.05.019
Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). Learning from imbalanced data sets (Vol. 10, pp. 978-3). Berlin: Springer. https://doi.org/10.1007/978-3-319-98074-4
Fix, E., & Hodges Jr, J. L. (1952). Discriminatory analysis-nonparametric discrimination: Small sample performance. California Univ Berkeley. https://apps.dtic.mil/sti/citations/ADA800276
Fotouhi, S., Asadi, S., & Kattan, M. W. (2019). A comprehensive data level analysis for cancer diagnosis on imbalanced data. Journal of Biomedical Informatics, 90, 103089. https://doi.org/10.1016/j.jbi.2018.12.003
Ganganwar, V. (2012). An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering, 2(4), 42-47.
García, S., Zhang, Z.-L., Altalhi, A., Alshomrani, S., & Herrera, F. (2018). Dynamic ensemble selection for multi-class imbalanced datasets. Information Sciences, 445–446, 22–37. https://doi.org/10.1016/j.ins.2018.03.002
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: methods and prospects. Big Data Analytics, 1(1), 1–22.
García, V., Mollineda, R. A., & Sánchez, J. S. (2008). On the k-NN performance in a challenging scenario of imbalance and overlapping. Pattern Analysis and Applications, 11(3), 269–280. https://doi.org/10.1007/s10044-007-0087-5
García-Laencina, P. J., Sancho-Gómez, J.-L., & Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: A review. Neural Computing and Applications, 19(2), 263–282. https://doi.org/10.1007/s00521-009-0295-6
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63(1), 3–42. https://doi.org/10.1007/s10994-006-6226-1
Halder, B., Ahmed, M. M., Amagasa, T., Isa, N. A. M., Faisal, R. H., & Rahman, M. (2022). Missing information in imbalanced data stream: fuzzy adaptive imputation approach. Applied Intelligence, 52(5), 5561-5583. https://doi.org/10.1007/s10489-021-02741-4
Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Springer, Berlin, Heidelberg.
Hand, D. J. (2007). Principles of Data Mining. Drug Safety, 30(7), 621–622. https://doi.org/10.2165/00002018-200730070-00010
Hasib, K. M., Iqbal, M. S., Shah, F. M., Mahmud, J. A., Popel, M. H., Showrov, M. I. H., Ahmed, S., & Rahman, O. (2020). A Survey of Methods for Managing the Classification and Solution of Data Imbalance Problem. Journal of Computer Science, 16(11), 1546–1557. https://doi.org/10.3844/jcssp.2020.1546.1557
Haykin, S. (1999). Self-organizing maps. Neural networks-A comprehensive foundation, 443-483.
Huang, C., Li, Y., Loy, C. C., & Tang, X. (2020). Deep Imbalanced Learning for Face Recognition and Attribute Prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11), 2781–2794. https://doi.org/10.1109/TPAMI.2019.2914680
Jerez, J. M., Molina, I., García-Laencina, P. J., Alba, E., Ribelles, N., Martín, M., & Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial intelligence in medicine, 50(2), 105-115. https://doi.org/10.1016/j.artmed.2010.05.002
Kaur, H., Pannu, H. S., & Malhi, A. K. (2019). A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions. ACM Computing Surveys, 52(4), 79:1-79:36. https://doi.org/10.1145/3343440
Kaur, P., & Gosain, A. (2018). Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise. In ICT Based Innovations (pp. 23-30). Springer, Singapore. https://doi.org/10.1007/978-981-10-6602-3_3
Kim, H., Golub, G. H., & Park, H. (2005). Missing value estimation for DNA microarray gene expression data: Local least squares imputation. Bioinformatics (Oxford, England), 21(2), 187–198. https://doi.org/10.1093/bioinformatics/bth499
Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning, 30(2), 195–215. https://doi.org/10.1023/A:1007452223027
Lee, D.-H., Yang, J.-K., Lee, C.-H., & Kim, K.-J. (2019). A data-driven approach to selection of critical process steps in the semiconductor manufacturing process considering missing and imbalanced data. Journal of Manufacturing Systems, 52, 146–156. https://doi.org/10.1016/j.jmsy.2019.07.001
Lee, W., Jun, C.-H., & Lee, J.-S. (2017). Instance categorization by support vector machines to adjust weights in AdaBoost for imbalanced data classification. Information Sciences, 381, 92–103. https://doi.org/10.1016/j.ins.2016.11.014
Lin, W.-C., & Tsai, C.-F. (2020). Missing value imputation: A review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53(2), 1487–1509. https://doi.org/10.1007/s10462-019-09709-4
Little, R. J. A., & Rubin, D. B. (1989). The Analysis of Social Science Data with Missing Values. Sociological Methods and Research, 18(2–3). https://doi.org/10.1177/0049124189018002004
Liu, T., Fan, W., & Wu, C. (2019). A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset. Artificial Intelligence in Medicine, 101, 101723. https://doi.org/10.1016/j.artmed.2019.101723
López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Information sciences, 250, 113–141. https://doi.org/10.1016/j.ins.2013.07.007
Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M.-S., & Zeineddine, H. (2019). An Experimental Study With Imbalanced Classification Approaches for Credit Card Fraud Detection. IEEE Access, 7, 93010–93022. https://doi.org/10.1109/ACCESS.2019.2927266
Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. ICML-2003 Workshop on Learning from Imbalanced Data Sets II.
Murti, D. M. P., Pujianto, U., Wibawa, A. P., & Akbar, M. I. (2019). K-Nearest Neighbor (K-NN) based Missing Data Imputation. 2019 5th International Conference on Science in Information Technology (ICSITech), 83–88. https://doi.org/10.1109/ICSITech46713.2019.8987530
Puri, A., & Kumar Gupta, M. (2021). Knowledge discovery from noisy imbalanced and incomplete binary class data. Expert Systems with Applications, 181, 115179. https://doi.org/10.1016/j.eswa.2021.115179
Purwar, A., & Singh, S. K. (2015). Hybrid prediction model with missing value imputation for medical data. Expert Systems with Applications, 42(13), 5621– 5631. https://doi.org/10.1016/j.eswa.2015.02.050
Quinlan, J. R. (1993). C4. 5: programs for machine learning.
Razavi-Far, R., Farajzadeh-Zanajni, M., Wang, B., Saif, M., & Chakrabarti, S. (2021). Imputation-Based Ensemble Techniques for Class Imbalance Learning. IEEE Transactions on Knowledge and Data Engineering, 33(5), 1988–2001. https://doi.org/10.1109/TKDE.2019.2951556
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592. https://doi.org/10.1093/biomet/63.3.581
Rubin, D. B. (1988, August). An overview of multiple imputation. In Proceedings of the survey research methods section of the American statistical association (pp. 79-84). Princeton, NJ, USA: Citeseer.
Salem, M., Taheri, S., & Yuan, J.-S. (2018). An Experimental Evaluation of Fault Diagnosis from Imbalanced and Incomplete Data for Smart Semiconductor Manufacturing. Big Data and Cognitive Computing, 2(4), 30. https://doi.org/10.3390/bdcc2040030
Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., & Abreu, P. H. (2019). Generating Synthetic Missing Data: A Review by Missing Mechanism. IEEE Access, 7, 11651–11667. https://doi.org/10.1109/ACCESS.2019.2891360
Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.
Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2009). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 40(1), 185-
197.https://doi.org/10.1109/TSMCA.2009.2029559
Shin, K., Han, J., & Kang, S. (2021). MI-MOTE: Multiple imputation-based minority oversampling technique for imbalanced and incomplete data classification. Information Sciences, 575, 80–89. https://doi.org/10.1016/j.ins.2021.06.043 Thomas, T., & Rajabi, E. (2021). A systematic review of machine learning-based missing value imputation techniques. Data Technologies and Applications, 55(4), 558–585. https://doi.org/10.1108/DTA-12-2020-0298
Twala, B. (2009). An Empirical Comparison of Techniques for Handling Incomplete Data Using Decision Trees. Applied Artificial Intelligence, 23(5), 373–405. https://doi.org/10.1080/08839510902872223
Wang, X., Li, A., Jiang, Z., & Feng, H. (2006). Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme. BMC Bioinformatics, 7(1), 32. https://doi.org/10.1186/1471-2105-7-32
Wasikowski, M., & Chen, X. (2010). Combating the Small Sample Class Imbalance Problem Using Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1388–1400. https://doi.org/10.1109/TKDE.2009.187
Wei, R., Wang, J., Su, M., Jia, E., Chen, S., Chen, T., & Ni, Y. (2018). Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Scientific Reports, 8(1), 663. https://doi.org/10.1038/s41598-017-19120-0
Zhang, Y., Li, X., Gao, L., Wang, L., & Wen, L. (2018). Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning. Journal of Manufacturing Systems, 48, 34–50. https://doi.org/10.1016/j.jmsy.2018.04.005
指導教授 蔡志豐(Chih-Fong Tsai) 審核日期 2022-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明