參考文獻 |
[1] “15-Lung-fact-sheet.pdf.” Accessed: Jul. 13, 2022. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf
[2] American Cancer Society, “Key Statistics for Lung Cancer,” Key Statistics for Lung Cancer. https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
[3] 衛生福利部國民健康署, “肺癌防治,” 肺癌防治, Dec. 31, 2016. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=4050
[4] 台灣癌症登記中心, “癌症年報,” 癌症年報, 2018. https://twcr.tw/?page_id=1354
[5] 衛生福利部國民健康署, “108年癌症登記報告,” 108年癌症登記報告, 2018. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=14913
[6] 衛生福利部, “109年國人死因統計結果,” 109年國人死因統計結果, Jun. 18, 2021. https://www.mohw.gov.tw/cp-5017-61533-1.html
[7] 衛生福利部國民健康署, “肺癌診斷後治療方式,” 肺癌診斷後治療方式, Dec. 31, 2016. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=4056
[8] The American Cancer Society, “Lung Cancer Survival Rates,” Lung Cancer Survival Rates. https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/survival-rates.html
[9] P. Han et al., “Clinical Decision Support System Improves Early Identification of Lung Cancer Patients at High Risk for Significant Weight Loss During Radiotherapy,” Int. J. Radiat. Oncol. Biol. Phys., vol. 108, no. 3, pp. e124–e125, Nov. 2020, doi: 10.1016/j.ijrobp.2020.07.1264.
[10] L. Eldridge, “Second Primary Cancer Overview,” Verywell Health. https://www.verywellhealth.com/what-is-a-second-primary-cancer-2248872
[11] The American Cancer Society, “Second Cancers After Lung Cancer,” Second Cancers After Lung Cancer. https://www.cancer.org/cancer/lung-cancer/after-treatment/second-cancers.html
[12] S. Warren, “Multiple primary malignant tumors. A survey of the literature and a statistical study,” 1932, [Online]. Available: https://www.semanticscholar.org/paper/Multiple-primary-malignant-tumors.-A-survey-of-the-Warren/db002e714d10e5dd14b81934601ddfbe2697c060
[13] “2007_mphrules_manual_09272011.pdf.” Accessed: Jul. 13, 2022. [Online]. Available: https://seer.cancer.gov/tools/mphrules/2007_mphrules_manual_09272011.pdf
[14] M. B. Amin et al., “The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging,” CA. Cancer J. Clin., vol. 67, no. 2, pp. 93–99, Mar. 2017, doi: 10.3322/caac.21388.
[15] C. G. N. Demandante, D. A. Troyer, and T. P. Miles, “Multiple primary malignant neoplasms: case report and a comprehensive review of the literature,” Am. J. Clin. Oncol., vol. 26, no. 1, pp. 79–83, Feb. 2003, doi: 10.1097/00000421-200302000-00015.
[16] S. M. D. A. C. Jayatilake and G. U. Ganegoda, “Involvement of Machine Learning Tools in Healthcare Decision Making,” J. Healthc. Eng., vol. 2021, p. 6679512, 2021, doi: 10.1155/2021/6679512.
[17] L. Wang, Z. Zhang, X. Zhang, X. Zhou, P. Wang, and Y. Zheng, “Chapter One - A Deep-forest based approach for detecting fraudulent online transaction,” in Advances in Computers, vol. 120, A. R. Hurson and S. Wu, Eds. Elsevier, 2021, pp. 1–38. doi: 10.1016/bs.adcom.2020.10.001.
[18] C. G. Rousseaux and S. C. Gad, “Chapter 30 - Statistical Assessment of Toxicologic Pathology Studies,” in Haschek and Rousseaux’s Handbook of Toxicologic Pathology (Third Edition), W. M. Haschek, C. G. Rousseaux, and M. A. Wallig, Eds. Boston: Academic Press, 2013, pp. 893–988. doi: 10.1016/B978-0-12-415759-0.00030-3.
[19] J. HOU and H. WANG, “多原发肺癌的诊断与治疗,” Chin. J. Lung Cancer, vol. 18, no. 12, pp. 764–769, Dec. 2015, doi: 10.3779/j.issn.1009-3419.2015.12.09.
[20] J. M. Boyle, D. J. Tandberg, J. P. Chino, T. A. D’Amico, N. E. Ready, and C. R. Kelsey, “Smoking history predicts for increased risk of second primary lung cancer: a comprehensive analysis,” Cancer, vol. 121, no. 4, pp. 598–604, Feb. 2015, doi: 10.1002/cncr.29095.
[21] M. Kono et al., “Incidence of Second Malignancy after Successful Treatment of Limited-Stage Small-Cell Lung Cancer and Its Effects on Survival,” J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, vol. 12, no. 11, pp. 1696–1703, Nov. 2017, doi: 10.1016/j.jtho.2017.07.030.
[22] R. Komaki, P. Allen, X. Wei, J. Welsh, S. Lin, and J. Cox, “Completing Thoracic Radiation Therapy With Concurrent Chemotherapy Within 6 weeks Is Important for Reducing Distant Disease in Patients With Limited-Stage Small Cell Lung Cancer,” Int. J. Radiat. Oncol. Biol. Phys., vol. 96, pp. E466–E467, Oct. 2016, doi: 10.1016/j.ijrobp.2016.06.1801.
[23] M. Eberl, L. F. Tanaka, K. Kraywinkel, and S. J. Klug, “Incidence of Smoking-Related Second Primary Cancers After Lung Cancer in Germany: An Analysis of Nationwide Cancer Registry Data,” J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, vol. 17, no. 3, pp. 388–398, Mar. 2022, doi: 10.1016/j.jtho.2021.11.016.
[24] F. Qiu et al., “Impacts of cigarette smoking on immune responsiveness: Up and down or upside down?,” Oncotarget, vol. 8, no. 1, pp. 268–284, Jan. 2017, doi: 10.18632/oncotarget.13613.
[25] A. Fisher et al., “Risk Factors Associated with a Second Primary Lung Cancer in Patients with an Initial Primary Lung Cancer,” Clin. Lung Cancer, vol. 22, no. 6, pp. e842–e850, Nov. 2021, doi: 10.1016/j.cllc.2021.04.004.
[26] GeneOnline, “發現新線索!造成腫瘤異質性和耐藥性的 ecDNA,” GeneOnline News, Apr. 12, 2017. https://geneonline.news/ecdna-glioblastoma/
[27] S. Hindocha et al., “A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models,” eBioMedicine, vol. 77, Mar. 2022, doi: 10.1016/j.ebiom.2022.103911.
[28] Y. Xie et al., “Early lung cancer diagnostic biomarker discovery by machine learning methods,” Transl. Oncol., vol. 14, no. 1, p. 100907, Jan. 2021, doi: 10.1016/j.tranon.2020.100907.
[29] F. Zhong et al., “A Predictive Model to Differentiate Between Second Primary Lung Cancers and Pulmonary Metastasis,” Acad. Radiol., vol. 29 Suppl 2, pp. S137–S144, Feb. 2022, doi: 10.1016/j.acra.2021.05.015.
[30] C.-C. Chang and S.-H. Chen, “Developing a Novel Machine Learning-Based Classification Scheme for Predicting SPCs in Breast Cancer Survivors,” Front. Genet., vol. 10, 2019, Accessed: Jul. 13, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fgene.2019.00848
[31] “107年版長表115欄位.pdf.” Accessed: Jul. 13, 2022. [Online]. Available: https://twcr.tw/wp-content/uploads/2021/12/107%E5%B9%B4%E7%89%88%E9%95%B7%E8%A1%A8115%E6%AC%84%E4%BD%8D.pdf
[32] S.-Y. Chen, “Using Machine Learning Algorithms for Second Primary Cancers Risk Prediction among Survivors of Breast Cancer,” Sep. 2021.
[33] 衛生福利部國民健康署, “身體質量指數BMI,” 健康九九. https://health99.hpa.gov.tw/onlineQuiz/bmi
[34] “Cancer SSF Manual_Official version_20220127_W.pdf.” Accessed: Jul. 13, 2022. [Online]. Available: http://tcr.cph.ntu.edu.tw/uploadimages/Cancer%20SSF%20Manual_Official%20version_20220127_W.pdf
[35] P. Royston and I. R. White, “Multiple Imputation by Chained Equations (MICE): Implementation in Stata,” J. Stat. Softw., vol. 45, no. 4, Dec. 2011, [Online]. Available: http://www.jstatsoft.org/v45/i04/paper
[36] S. van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate Imputation by Chained Equations in R,” J. Stat. Softw., vol. 45, pp. 1–67, Dec. 2011, doi: 10.18637/jss.v045.i03.
[37] M. B. Kursa and W. R. Rudnicki, “Feature Selection with the Boruta Package,” J. Stat. Softw., vol. 36, pp. 1–13, Sep. 2010, doi: 10.18637/jss.v036.i11.
[38] T. Edgar and D. Manz, “Chapter 4 - Exploratory Study,” 2017, pp. 95–130. doi: 10.1016/B978-0-12-805349-2.00004-2.
[39] A. Bartosik and H. Whittingham, “Chapter 7 - Evaluating safety and toxicity,” in The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry, S. K. Ashenden, Ed. Academic Press, 2021, pp. 119–137. doi: 10.1016/B978-0-12-820045-2.00008-8.
[40] M. Kuhn, D. Vaughan, E. Hvitfeldt, and RStudio, parsnip: A Common API to Modeling and Analysis Functions. 2022. [Online]. Available: https://CRAN.R-project.org/package=parsnip
[41] N. Ben Amor, S. Benferhat, and Z. Elouedi, “Qualitative classification and evaluation in possibilistic decision trees,” in 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542), Jul. 2004, vol. 2, pp. 653–657 vol.2. doi: 10.1109/FUZZY.2004.1375474.
[42] R. Gove and J. Faytong, “Chapter 4 - Machine Learning and Event-Based Software Testing: Classifiers for Identifying Infeasible GUI Event Sequences,” in Advances in Computers, vol. 86, A. Hurson and A. Memon, Eds. Elsevier, 2012, pp. 109–135. doi: 10.1016/B978-0-12-396535-6.00004-1.
[43] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
[44] J. A. Bunge and D. H. Judson, “Data Mining,” in Encyclopedia of Social Measurement, K. Kempf-Leonard, Ed. New York: Elsevier, 2005, pp. 617–624. doi: 10.1016/B0-12-369398-5/00159-6.
[45] F. H. Guenther, “Neural Networks: Biological Models and Applications,” in International Encyclopedia of the Social & Behavioral Sciences, N. J. Smelser and P. B. Baltes, Eds. Oxford: Pergamon, 2001, pp. 10534–10537. doi: 10.1016/B0-08-043076-7/03667-6.
[46] S. Couch, M. Kuhn, and RStudio, stacks: Tidy Model Stacking. 2022. [Online]. Available: https://CRAN.R-project.org/package=stacks
[47] S. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions.” arXiv, Nov. 24, 2017. doi: 10.48550/arXiv.1705.07874.
[48] W. Chang et al., shiny: Web Application Framework for R. 2021. [Online]. Available: https://CRAN.R-project.org/package=shiny
[49] K. Kawamoto, C. A. Houlihan, E. A. Balas, and D. F. Lobach, “Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success,” BMJ, vol. 330, no. 7494, p. 765, Apr. 2005, doi: 10.1136/bmj.38398.500764.8F.
[50] Y. Park, Y. Bang, and J. Kwon, “Clinical decision support system and hospital readmission reduction: Evidence from U.S. panel data,” Decis. Support Syst., vol. 159, p. 113816, Aug. 2022, doi: 10.1016/j.dss.2022.113816.
[51] F. Cabitza and A. Campagner, “The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical AI studies,” Int. J. Med. Inf., vol. 153, p. 104510, Sep. 2021, doi: 10.1016/j.ijmedinf.2021.104510. |