參考文獻 |
[1] Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & information systems engineering, 6(4), 239-242.
[2]Sisinni, E., Saifullah, A., Han, S., Jennehag, U., & Gidlund, M. (2018). Industrial internet of things: Challenges, opportunities, and directions. IEEE transactions on industrial informatics, 14(11), 4724-4734.
[3]Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications.
[4]Parsana, S., Radadia, N., Sheth, M., Sheth, N., Savsani, V., Prasad, N. E., & Ramprabhu, T. (2018). Machining parameter optimization for EDM machining of Mg-RE-Zn-Zr alloy using multi-objective passing vehicle search algorithm. Archives of civil and mechanical engineering, 18(3), 799-817.
[5]Slătineanu, L., Dodun, O., Coteaţă, M., Nagîţ, G., Băncescu, I. B., & Hriţuc, A. (2020). Wire electrical discharge machining—A review. Machines, 8(4), 69.
[6] Chiu, H. W., & Lee, C. H. (2020). Intelligent machining system based on CNC controller parameter selection and optimization. IEEE Access, 8, 51062-51070.
[7]Gen, M., & Lin, L. (2014). Multiobjective evolutionary algorithm for manufacturing scheduling problems: state-of-the-art survey. J Intell Manuf, 25, 849-866.
[8]Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.
[9]Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big data, 3(1), 1-40.
[10] Ho, K. H., & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13), 1287-1300.
[11] Ho, K. H., Newman, S. T., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12-13), 1247-1259.
[12] EDM/WEDM原理
https://kknews.cc/zh-tw/news/jjjb8rp.html
[13] 放電加工原理:
http://120.114.52.149/~4970H089/wiki/index.php/%E6%94%BE%E9%9B%BB%E5%8A%A0%E5%B7%A5
[14] WEDM:
https://www.researchgate.net/figure/Working-principle-of-WEDM_fig2_260107358
[15] 算術平均粗糙度 Ra
https://www.azom.com/article.aspx?ArticleID=19277
[16] B. Singh, and J. P. Misra, “A critical review of wire electric discharge machining,” Chapter 23 in DAAAM International Scientific Book, pp.249-266, 2016.
[17] Goyal, A., Gautam, N., & Pathak, V. K. (2021). An adaptive neuro-fuzzy and NSGA-II-based hybrid approach for modelling and multi-objective optimization of WEDM quality characteristics during machining titanium alloy. Neural Computing and Applications, 33(23), 16659-16674.
[18] U. Esme, A. Sagbas, F. Kahraman, “Prediction of surface roughness in wire electrical discharge machining using design of experiments and neural networks,” Iranian Journal of Science & Technology, Transaction B, Engineering, 33(B3), pp 231-240, 2009
[19] A. Kumar, V. Kumar, J. Kumar, “Prediction of surface roughness in wire electric discharge machining based on response surface methodology,” International Journal of Engineering and Technology, 2012.
[20] Naresh, C.; Bose, P.; Rao, C. Artificial neural networks and adaptive neuro-fuzzy models for predicting WEDM machining responses of Nitinol alloy: Comparative study.SN Appl. Sci.2020,2, 1–23
[21] Chalisgaonkar, R.; Kumar, J.; Pant, P. Prediction of machining characteristics of finish cut WEDM process for pure titanium using feed forward back propagation neural network.Mater. Today Proc.2020,25, 592–601.
[22].Lalwani, V.; Sharma, P.; Pruncu, C.I.; Unune, D.R. Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy.J. Manuf. Mater. Process.2020,4, 44
[23] Surya, V.R.; Kumar, K.V.; Keshavamurthy, R.; Ugrasen, G.; Ravindra, H. Prediction of machining characteristics using artificial neural network in wire EDM of Al7075 based in-situ composite.Mater. Today Proc.2017,4, 203–212
[24] Gurupavan, H.; Devegowda, T.; Ravindra, H.; Ugrasen, G. Estimation of machining performances in WEDM of aluminium based metal matrix composite material using ANN.Mater. Today Proc.2017,4, 10035–10038
[25] Yusoff, Y.; Zain, A.M.; Sharif, S.; Sallehuddin, R.; Ngadiman, M.S. Potential ANN prediction model for multiperformances WEDM on Inconel 718.Neural Comput. Appl.2018,30, 2113–2127
[26]AOI技術 : https://www.google.com/url?sa=i&url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E8%2587%25AA%25E5%258B%2595%25E5%2585%2589%25E5%25AD%25B8%25E6%25AA%25A2%25E6%259F%25A5&psig=AOvVaw2AoGFim_H8BgI4rAKGX8Ui&ust=1646450909069000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCPiWjZ_Bq_YCFQAAAAAdAAAAABAY
[27] 分釐卡 : https://www.keyence.com.tw/ss/products/measure-sys/measurement-selection/type/micrometer.jsp
[28] 深度學習 : https://chih-sheng-huang821.medium.com/%E4%BB%80%E9%BA%BC%E6%98%AF%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-587e6a0dc72a
[29] 基因演算法 :
https://zh.wikipedia.org/wiki/%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95
[30] Golchha, A., & Qureshi, S. G. (2015). Non-dominated sorting genetic algorithm-II–A succinct survey. International Journal of Computer Science and Information Technologies, 6(1), 252-255.
[31] Ghosh, T., & Martinsen, K. (2020). Generalized approach for multi-response machining process optimization using machine learning and evolutionary algorithms. Engineering Science and Technology, an International Journal, 23(3), 650-663.
[32] Srinivas, N., & Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.
[33] Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-731. |