參考文獻 |
[1] M. Queen and R. Roll, “Firm Mortality: Using Market Indicators to Predict Survival.”
[2] F. van der Colff and L. Brummer, “Financial distress prediction using a machine learning model- A study of JSE-listed companies”.
[3] L. H. Chen and H. der Hsiao, “Feature selection to diagnose a business crisis by using a real GA-based support vector machine: An empirical study,” Expert Systems with Applications, vol. 35, no. 3, pp. 1145–1155, Oct. 2008, doi: 10.1016/j.eswa.2007.08.010.
[4] Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang, “Predicting corporate financial distress based on integration of support vector machine and logistic regression,” Expert Systems with Applications, vol. 33, no. 2, pp. 434–440, Aug. 2007, doi: 10.1016/j.eswa.2006.05.006.
[5] N. Santoso and W. Wibowo, “Financial Distress Prediction using Linear Discriminant Analysis and Support Vector Machine,” in Journal of Physics: Conference Series, Mar. 2018, vol. 979, no. 1. doi: 10.1088/1742-6596/979/1/012089.
[6] O. ULUDAĞ and A. GÜRSOY, “Financial Risk Estimation with KNN Classification Algorithm on Determined Financial Ratios,” European Journal of Science and Technology, Dec. 2021, doi: 10.31590/ejosat.1001663.
[7] F. H. TUNIO, Y. DING, A. N. AGHA, K. AGHA, and H. U. R. Z. PANHWAR, “Financial Distress Classification Using Adaboost and Bagging in Pakistan Stock Exchange,” Journal of Asian Finance, Economics and Business, vol. 8, no. 1, pp. 665–673, 2021, doi: 10.13106/jafeb.2021.vol8.no1.665.
[8] F. Lin, D. Liang, and W. S. Chu, “The role of non-financial features related to corporate governance in business crisis classification,” Journal of Marine Science and Technology, 2010.
[9] E. I. Altman, M. Iwanicz-Drozdowska, E. K. Laitinen, and A. Suvas, “Distressed Firm and Bankruptcy Classification in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model,” SSRN Electronic Journal, 2014, doi: 10.2139/ssrn.2536340.
[10] A. M. Abdullah, “Comparing the Reliability of Accounting-Based and Market-based Classification Models,” Asian Journal of Accounting and Governance, vol. 7, pp. 41–55, Nov. 2016, doi: 10.17576/ajag-2016-07-04.
[11] S. T. Bharath and T. Shumway, “Forecasting default with the Merton distance to default model,” Review of Financial Studies, vol. 21, no. 3, pp. 1339–1369, May 2008, doi: 10.1093/rfs/hhn044.
[12] J. A. Ohlson, “Financial Ratios and the Probabilistic Classification of Bankruptcy,” 1980.
[13] D. W. Hosmer, Stanley. Lemeshow, and R. X. Sturdivant, Applied logistic regression.
[14] C. Cortes, V. Vapnik, and L. Saitta, “Support-Vector Networks Editor,” Kluwer Academic Publishers, 1995.
[15] A. K. Qin, S. Y. M. Shi, P. N. Suganthan, and M. Loog, “Enhanced Direct Linear Discriminant Analysis for Feature Extraction on High Dimensional Data,” 2005. [Online]. Available: www.aaai.org
[16] T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967, doi: 10.1109/TIT.1967.1053964.
[17] L. Bbeiman, “Bagging Predictors,” 1996.
[18] M. Y. Chen, “Predicting corporate financial distress based on integration of decision tree classification and logistic regression,” Expert Systems with Applications, vol. 38, no. 9, pp. 11261–11272, Sep. 2011, doi: 10.1016/j.eswa.2011.02.173.
[19] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles of heterogeneous classifiers using Stacked Generalization,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 21–34, Jan. 2015, doi: 10.1002/widm.1143.
[20] W. Jiang, Z. Chen, Y. Xiang, D. Shao, L. Ma, and J. Zhang, “SSEM: A Novel Self-Adaptive Stacking Ensemble Model for Classification,” IEEE Access, vol. 7, pp. 120337–120349, 2019, doi: 10.1109/access.2019.2933262.
[21] W. Jiang, Z. Chen, Y. Xiang, D. Shao, L. Ma, and J. Zhang, “Ssem: A novel self-adaptive stacking ensemble model for classification,” IEEE Access, vol. 7, pp. 120337–120349, 2019, doi: 10.1109/ACCESS.2019.2933262.
[22] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better than selecting the best one?,” Machine Learning, vol. 54, no. 3, pp. 255–273, Mar. 2004, doi: 10.1023/B:MACH.0000015881.36452.6e.
[23] E. Menahem, L. Rokach, and Y. Elovici, “Troika-An Improved Stacking Schema for Classification Tasks.” |