博碩士論文 109521046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.216.95.250
姓名 何匡哲(Kuang-Che Ho)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫之接觸金屬研究及鎂矽錫/鎂銀銻熱電元件製作
(Study of N-type Mg2(SiSn) Contact Metal and Fabrication of Mg2(SiSn)/MgAgSb Thermoelectric Device)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年,因能源枯竭及再生能源的意識抬頭,熱電發電引起廣大關注。熱電材料是一種能將電能與熱能交互轉換的材料,此種材料能夠在足夠的溫差下產生電動勢,達到以熱生電的現象。熱電材料的下一階段為熱電元件、模組,由多對的N-type與P-type熱電塊材串接,使每塊熱電材料在溫差下產生的電壓相加,能夠產生有效、可利用的電能。然而熱電模組的應用環境處於高溫狀態,模組裡的熱電塊材相接處的特性就顯為重要。金屬接觸層置於熱電材料與焊料、電極之間,防止在高溫時外部的焊料及電極元素擴散至熱電塊材內部,金屬接觸層的特性攸關於整熱電模組的整體性能。
本實驗建立在鎂矽錫熱電材料的基礎上,找尋不同種類的金屬材料,其材料必須擁有低電阻率、高機械強度、好的熱穩定性,並且不與熱電試片本身有過多的反應。接續透過不同的製作方式,如塗抹、粉末壓片,冷壓等方式,使其接合於鎂矽錫熱電材料表面上,再進行長時間退火,並於介面處進行電性量測。最後挑選出表現優異的金屬接觸材料來製作出三組單對的熱電元件,進行開路電壓、短路電流及電阻的量測。
摘要(英) In recent years, thermoelectric power generation has attracted a lot of attention due to energy crisis and the demand of renewable energy. Thermoelectric material is a material that can directly convert electrical energy and thermal energy. These materials can generate electromotive force under a sufficient temperature difference to achieve the phenomenon of generating electricity from heat. The next stage of thermoelectric materials is thermoelectric devices and modules. Multiple pairs of N-type and P-type thermoelectric blocks are connected in series, so that the voltages generated by each thermoelectric material under the temperature difference can be added together, which can generate effective and usable electrical energy. However, the application condition of the thermoelectric module is in a high temperature environment, and the characteristics of the junction of the thermoelectric blocks in the module are very important. The contact metal layer is placed between the thermoelectric material and the electrodes as the solder to prevent the elements from diffusing into the thermoelectric blocks at high temperature. The properties of the contact metal layer are critical to the overall performance of the thermoelectric module.
This study is on the N-type Mg2(SiSn) thermoelectric materials, looking for different kinds of contact metals. The materials must have low resistivity, high mechanical strength, good thermal stability, and do not have too much reaction with the thermoelectric blocks itself. Then, through different production processes, such as coating, powder pressing, cold pressing, annealing, etc., it is bonded to the surface of the N-type Mg2(SiSn) thermoelectric material. Finally, the contact metals with excellent performance were selected to make three sets of single-pair thermoelectric device/elements, and the open-circuit voltage, short-circuit current and resistance were measured.
關鍵字(中) ★ 熱電材料
★ 金屬接觸
★ 熱電元件
關鍵字(英)
論文目次 摘要 i
Abstact ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 熱電材料種類 2
1-3 熱電模組分析 3
1-4 熱電效應實際應用及市場分析 4
1-4-1 熱電效應的應用 4
1-4-2 熱電市場分析 7
1-5 研究動機與目的 10
第二章 熱電原理與實驗儀器 11
2-1 熱電理論 11
2-1-1 賽貝克效應(Seebeck effect) 11
2-1-2 帕爾帖效應(Peltier effect) 12
2-1-3 湯姆森效應(Thomson effect) 13
2-1-4 熱電優值ZT(figure of merit)與轉換效率(conversion efficiency) 14
2-2 文獻回顧 15
2-2-1 鎂矽錫合金材料簡介 15
2-2-2 錳矽化合物簡介 17
2-2-3 金屬接觸與擴散阻障層材料簡介 18
2-3 實驗儀器 19
2-3-1 電阻率量測 19
2-3-2 Seebeck 係數量測 20
2-3-3 密度量測 22
2-3-4 熱擴散係數量測 23
2-3-5 比熱量測 24
2-3-6 熱導率計算 25
2-3-7 掃描電子顯微鏡 25
2-3-8 X射線繞射儀 26
2-3-9 元件輸出電性量測 27
第三章 材料與元件製作流程 30
3-1 實驗前言 30
3-2 熱電塊材製作 31
3-2-1 N-type 矽粉摻雜 31
3-2-2 N-type Mn5Si3 粉末製作 33
3-2-3 混合Mg、Sn、Si、Bi以及Mn5Si3 36
3-2-4 冷壓成塊材 36
3-2-5 高溫燒結 36
3-2-6 中溫退火 37
3-3 熱電材料之金屬接觸製作 37
3-4 熱電元件製作 38
第四章 實驗結果討論 41
4-1 測試不同矽粉之製作方式的熱電試片表現 41
4-2 測試在800度高溫燒結後加入不銹鋼珠混粉之熱電試片表現 43
4-3 熱電試片與焊料相接之表現 44
4-4 熱電試片與太陽能正面導電銀漿之金屬接觸表現 49
4-5 熱電試片與金屬粉末壓片之金屬接觸表現 50
4-6 熱電試片與金屬薄片之金屬接觸表現 52
4-7 熱電元件量測結果 53
第五章 結論與未來展望 62
參考文獻 64
參考文獻 [1] M. S. D. I. L. Thomas, "Alternative energy technologies," Nature, 2001.
[2] A. Mohammadnia, A. Rezania, B. M. Ziapour, F. Sedaghati, and L. Rosendahl, "Hybrid energy harvesting system to maximize power generation from solar energy," Energy Conversion and Management, vol. 205, 2020, doi: 10.1016/j.enconman.2019.112352.
[3] S. Gandhar, J. Ohri, and M. Singh, "A Critical Review of Wind Energy Based Power Generation Systems," Asian Journal of Water, Environment and Pollution, vol. 17, no. 2, pp. 29-36, 2020, doi: 10.3233/ajw200017.
[4] Y. Cao, L. W. W. Mihardjo, M. Dahari, and I. Tlili, "Waste heat from a biomass fueled gas turbine for power generation via an ORC or compressor inlet cooling via an absorption refrigeration cycle: A thermoeconomic comparison," Applied Thermal Engineering, vol. 182, 2021, doi: 10.1016/j.applthermaleng.2020.116117.
[5] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and Synergy in High-Efficiency Thermoelectric Materials," Adv Mater, vol. 29, no. 14, Apr 2017, doi: 10.1002/adma.201605884.
[6] C. Uher, Materials Aspect of Thermoelectricity. CRC Press, 2017.
[7] L. Hu et al., "Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions," Advanced Energy Materials, vol. 5, no. 17, 2015, doi: 10.1002/aenm.201500411.
[8] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876, pp. 634-638, May 2008, doi: 10.1126/science.1156446.
[9] H. Wang, Z. M. Gibbs, Y. Takagiwa, and G. J. Snyder, "Tuning bands of PbSe for better thermoelectric efficiency," Energy & Environmental Science, vol. 7, no. 2, pp. 804-811, Feb 2014, doi: 10.1039/c3ee43438a.
[10] M. Zhou, J. F. Li, and T. Kita, "Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance," Journal of the American Chemical Society, vol. 130, no. 13, pp. 4527-4532, Apr 2008, doi: 10.1021/ja7110652.
[11] S. H. Yang, T. J. Zhu, T. Sun, S. N. Zhang, X. B. Zhao, and J. He, "Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials," Nanotechnology, vol. 19, no. 24, Jun 2008, Art no. 245707, doi: 10.1088/0957-4484/19/24/245707.
[12] M. Rull-Bravo, A. Moure, J. Fernández, and M. Martín-González, "Skutterudites as thermoelectric materials: revisited," Rsc Advances, vol. 5, no. 52, pp. 41653-41667, 2015.
[13] W. Liu et al., "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1-xSnx Solid Solutions," Physical Review Letters, vol. 108, no. 16, Apr 2012, Art no. 166601, doi: 10.1103/PhysRevLett.108.166601.
[14] T. Caillat, J. P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3," Journal of Physics and Chemistry of Solids, vol. 58, no. 7, pp. 1119-1125, Jul 1997, doi: 10.1016/s0022-3697(96)00228-4.
[15] B. Yu et al., "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites," Nano Letters, vol. 12, no. 4, pp. 2077-2082, Apr 2012, doi: 10.1021/nl3003045.
[16] A. F. May, E. Flage-Larsen, and G. J. Snyder, "Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4− z M z (M= Sb, Bi)," Physical Review B, vol. 81, no. 12, p. 125205, 2010.
[17] C. G. Fu et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature Communications, vol. 6, Sep 2015, Art no. 8144, doi: 10.1038/ncomms9144.
[18] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11, p. 386, 1954.
[19] G. A. Slack and D. Rowe, "CRC handbook of thermoelectrics," ed: CRC press Boca Raton, FL, 1995.
[20] G. Tan, M. Ohta, and M. G. Kanatzidis, "Thermoelectric power generation: from new materials to devices," Philosophical Transactions of the Royal Society A, vol. 377, no. 2152, p. 20180450, 2019.
[21] Y. Amagai. "Development of a High-Power Flexible Thermoelectric Module." https://www.aist.go.jp/aist_e/list/latest_research/2019/20190802/en20190802.html (accessed.
[22] D. Astrain, J. G. Vian, and M. Dominguez, "Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation," Applied Thermal Engineering, vol. 23, no. 17, pp. 2183-2200, Dec 2003, doi: 10.1016/s1359-4311(03)00202-3.
[23] N. Putra, A. W. Sukyono, D. Johansen, and F. N. Iskandar, "The characterization of a cascade thermoelectric cooler in a cryosurgery device," Cryogenics, vol. 50, no. 11-12, pp. 759-764, Nov-Dec 2010, doi: 10.1016/j.cryogenics.2010.10.002.
[24] K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electronics Letters, vol. 42, no. 18, pp. 1034-1036, Aug 2006, doi: 10.1049/el:20062442.
[25] R. Yang, G. Chen, A. R. Kumar, G. J. Snyder, and J.-P. Fleurial, "Transient cooling of thermoelectric coolers and its applications for microdevices," Energy Conversion and Management, vol. 46, no. 9-10, pp. 1407-1421, 2005.
[26] L. Zhu, H. B. Tan, and J. L. Yu, "Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications," Energy Conversion and Management, vol. 76, pp. 685-690, Dec 2013, doi: 10.1016/j.enconman.2013.08.014.
[27] L. M. Shen, F. Xiao, H. X. Chen, and S. W. Wang, "Investigation of a novel thermoelectric radiant air-conditioning system," (in English), Energy Build., Article vol. 59, pp. 123-132, Apr 2013, doi: 10.1016/j.enbuild.2012.12.041.
[28] H. Mamur, Ö. F. Dilmaç, J. Begum, and M. R. A. Bhuiyan, "Thermoelectric generators act as renewable energy sources," Cleaner Materials, vol. 2, p. 100030, 2021.
[29] S. Brewster. "Body Heat Powers This Smart Watch." https://www.technologyreview.com/2016/11/16/107172/body-heat-powers-this-smart-watch/ (accessed.
[30] R. M. Tian, Y. Q. Liu, K. Koumoto, and J. Chen, "Body Heat Powers Future Electronic Skins," (in English), Joule, Editorial Material vol. 3, no. 6, pp. 1399-1403, Jun 2019, doi: 10.1016/j.joule.2019.03.011.
[31] K. Ivanov and A. Aleksandrov, "Design and Study of an Automotive Thermoelectric Generator," in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 2020: IEEE, pp. 1-4.
[32] L. Janak, Z. Ancik, J. Vetiska, and Z. Hadas, "Thermoelectric generator based on MEMS module as an electric power backup in aerospace applications," Materials Today: Proceedings, vol. 2, no. 2, pp. 865-870, 2015.
[33] 葉建弦. "固態熱電材料在廢熱回收領域之應用." 工業技術研究院綠能與環境研究所. https://cc3.asia.edu.tw/ezfiles/6/1006/img/235/210886578.pdf (accessed.
[34] GENEVA. "Thermocouple Thermometers and the Seebeck Effect." https://www.tegam.com/thermocouple-thermometers-and-the-seebeck-effect/ (accessed.
[35] S. B. Reddy. "Seebeck Effect Theory." https://instrumentationtools.com/seebeck-effect-theory/ (accessed.
[36] H. Lim, Y. K. Kang, and J. W. Jeong, "Thermoelectric radiant cooling panel design: Numerical simulation and experimental validation," (in English), Applied Thermal Engineering, Article vol. 144, pp. 248-261, Nov 2018, doi: 10.1016/j.applthermaleng.2018.08.065.
[37] M. Thakkar, "A report on" Peltier (thermoelectric) cooling module"
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明