參考文獻 |
[1] M. S. D. I. L. Thomas, "Alternative energy technologies," Nature, 2001.
[2] A. Mohammadnia, A. Rezania, B. M. Ziapour, F. Sedaghati, and L. Rosendahl, "Hybrid energy harvesting system to maximize power generation from solar energy," Energy Conversion and Management, vol. 205, 2020, doi: 10.1016/j.enconman.2019.112352.
[3] S. Gandhar, J. Ohri, and M. Singh, "A Critical Review of Wind Energy Based Power Generation Systems," Asian Journal of Water, Environment and Pollution, vol. 17, no. 2, pp. 29-36, 2020, doi: 10.3233/ajw200017.
[4] Y. Cao, L. W. W. Mihardjo, M. Dahari, and I. Tlili, "Waste heat from a biomass fueled gas turbine for power generation via an ORC or compressor inlet cooling via an absorption refrigeration cycle: A thermoeconomic comparison," Applied Thermal Engineering, vol. 182, 2021, doi: 10.1016/j.applthermaleng.2020.116117.
[5] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and Synergy in High-Efficiency Thermoelectric Materials," Adv Mater, vol. 29, no. 14, Apr 2017, doi: 10.1002/adma.201605884.
[6] C. Uher, Materials Aspect of Thermoelectricity. CRC Press, 2017.
[7] L. Hu et al., "Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions," Advanced Energy Materials, vol. 5, no. 17, 2015, doi: 10.1002/aenm.201500411.
[8] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876, pp. 634-638, May 2008, doi: 10.1126/science.1156446.
[9] H. Wang, Z. M. Gibbs, Y. Takagiwa, and G. J. Snyder, "Tuning bands of PbSe for better thermoelectric efficiency," Energy & Environmental Science, vol. 7, no. 2, pp. 804-811, Feb 2014, doi: 10.1039/c3ee43438a.
[10] M. Zhou, J. F. Li, and T. Kita, "Nanostructured AgPbmSbTem+2 system bulk materials with enhanced thermoelectric performance," Journal of the American Chemical Society, vol. 130, no. 13, pp. 4527-4532, Apr 2008, doi: 10.1021/ja7110652.
[11] S. H. Yang, T. J. Zhu, T. Sun, S. N. Zhang, X. B. Zhao, and J. He, "Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials," Nanotechnology, vol. 19, no. 24, Jun 2008, Art no. 245707, doi: 10.1088/0957-4484/19/24/245707.
[12] M. Rull-Bravo, A. Moure, J. Fernández, and M. Martín-González, "Skutterudites as thermoelectric materials: revisited," Rsc Advances, vol. 5, no. 52, pp. 41653-41667, 2015.
[13] W. Liu et al., "Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1-xSnx Solid Solutions," Physical Review Letters, vol. 108, no. 16, Apr 2012, Art no. 166601, doi: 10.1103/PhysRevLett.108.166601.
[14] T. Caillat, J. P. Fleurial, and A. Borshchevsky, "Preparation and thermoelectric properties of semiconducting Zn4Sb3," Journal of Physics and Chemistry of Solids, vol. 58, no. 7, pp. 1119-1125, Jul 1997, doi: 10.1016/s0022-3697(96)00228-4.
[15] B. Yu et al., "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites," Nano Letters, vol. 12, no. 4, pp. 2077-2082, Apr 2012, doi: 10.1021/nl3003045.
[16] A. F. May, E. Flage-Larsen, and G. J. Snyder, "Electron and phonon scattering in the high-temperature thermoelectric La 3 Te 4− z M z (M= Sb, Bi)," Physical Review B, vol. 81, no. 12, p. 125205, 2010.
[17] C. G. Fu et al., "Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials," Nature Communications, vol. 6, Sep 2015, Art no. 8144, doi: 10.1038/ncomms9144.
[18] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11, p. 386, 1954.
[19] G. A. Slack and D. Rowe, "CRC handbook of thermoelectrics," ed: CRC press Boca Raton, FL, 1995.
[20] G. Tan, M. Ohta, and M. G. Kanatzidis, "Thermoelectric power generation: from new materials to devices," Philosophical Transactions of the Royal Society A, vol. 377, no. 2152, p. 20180450, 2019.
[21] Y. Amagai. "Development of a High-Power Flexible Thermoelectric Module." https://www.aist.go.jp/aist_e/list/latest_research/2019/20190802/en20190802.html (accessed.
[22] D. Astrain, J. G. Vian, and M. Dominguez, "Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation," Applied Thermal Engineering, vol. 23, no. 17, pp. 2183-2200, Dec 2003, doi: 10.1016/s1359-4311(03)00202-3.
[23] N. Putra, A. W. Sukyono, D. Johansen, and F. N. Iskandar, "The characterization of a cascade thermoelectric cooler in a cryosurgery device," Cryogenics, vol. 50, no. 11-12, pp. 759-764, Nov-Dec 2010, doi: 10.1016/j.cryogenics.2010.10.002.
[24] K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electronics Letters, vol. 42, no. 18, pp. 1034-1036, Aug 2006, doi: 10.1049/el:20062442.
[25] R. Yang, G. Chen, A. R. Kumar, G. J. Snyder, and J.-P. Fleurial, "Transient cooling of thermoelectric coolers and its applications for microdevices," Energy Conversion and Management, vol. 46, no. 9-10, pp. 1407-1421, 2005.
[26] L. Zhu, H. B. Tan, and J. L. Yu, "Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications," Energy Conversion and Management, vol. 76, pp. 685-690, Dec 2013, doi: 10.1016/j.enconman.2013.08.014.
[27] L. M. Shen, F. Xiao, H. X. Chen, and S. W. Wang, "Investigation of a novel thermoelectric radiant air-conditioning system," (in English), Energy Build., Article vol. 59, pp. 123-132, Apr 2013, doi: 10.1016/j.enbuild.2012.12.041.
[28] H. Mamur, Ö. F. Dilmaç, J. Begum, and M. R. A. Bhuiyan, "Thermoelectric generators act as renewable energy sources," Cleaner Materials, vol. 2, p. 100030, 2021.
[29] S. Brewster. "Body Heat Powers This Smart Watch." https://www.technologyreview.com/2016/11/16/107172/body-heat-powers-this-smart-watch/ (accessed.
[30] R. M. Tian, Y. Q. Liu, K. Koumoto, and J. Chen, "Body Heat Powers Future Electronic Skins," (in English), Joule, Editorial Material vol. 3, no. 6, pp. 1399-1403, Jun 2019, doi: 10.1016/j.joule.2019.03.011.
[31] K. Ivanov and A. Aleksandrov, "Design and Study of an Automotive Thermoelectric Generator," in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), 2020: IEEE, pp. 1-4.
[32] L. Janak, Z. Ancik, J. Vetiska, and Z. Hadas, "Thermoelectric generator based on MEMS module as an electric power backup in aerospace applications," Materials Today: Proceedings, vol. 2, no. 2, pp. 865-870, 2015.
[33] 葉建弦. "固態熱電材料在廢熱回收領域之應用." 工業技術研究院綠能與環境研究所. https://cc3.asia.edu.tw/ezfiles/6/1006/img/235/210886578.pdf (accessed.
[34] GENEVA. "Thermocouple Thermometers and the Seebeck Effect." https://www.tegam.com/thermocouple-thermometers-and-the-seebeck-effect/ (accessed.
[35] S. B. Reddy. "Seebeck Effect Theory." https://instrumentationtools.com/seebeck-effect-theory/ (accessed.
[36] H. Lim, Y. K. Kang, and J. W. Jeong, "Thermoelectric radiant cooling panel design: Numerical simulation and experimental validation," (in English), Applied Thermal Engineering, Article vol. 144, pp. 248-261, Nov 2018, doi: 10.1016/j.applthermaleng.2018.08.065.
[37] M. Thakkar, "A report on" Peltier (thermoelectric) cooling module" |