參考文獻 |
Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE transactions on pattern analysis and machine intelligence, 28(12), 2037-2041.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bao, Y., Fang, H., & Zhang, J. (2014, June). Topicmf: Simultaneously exploiting ratings and reviews for recommendation. In Twenty-Eighth AAAI conference on artificial intelligence.
Bourdev, L., Maji, S., & Malik, J. (2011, November). Describing people: A poselet-based approach to attribute classification. In 2011 International Conference on Computer Vision (pp. 1543-1550). IEEE.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Brown, P. J., Bovey, J. D., & Chen, X. (1997). Context-aware applications: from the laboratory to the marketplace. IEEE personal communications, 4(5), 58-64.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27.
Dalal, N., & Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR′05) (Vol. 1, pp. 886-893). Ieee.
Dong, Y., Chawla, N. V., & Swami, A. (2017, August). metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 135-144).
Freedman, D. A. (2009). Statistical models: theory and practice. cambridge university press.
Févotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the β-divergence. Neural computation, 23(9), 2421-2456.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
Guan, C., Qin, S., Ling, W., & Ding, G. (2016). Apparel recommendation system evolution: an empirical review. International Journal of Clothing Science and Technology.
Hadsell, R., Chopra, S., & LeCun, Y. (2006, June). Dimensionality reduction by learning an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR′06) (Vol. 2, pp. 1735-1742). IEEE.
Han, X., Wu, Z., Jiang, Y. G., & Davis, L. S. (2017, October). Learning fashion compatibility with bidirectional lstms. In Proceedings of the 25th ACM international conference on Multimedia (pp. 1078-1086).
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
He, R., & McAuley, J. (2016, February). VBPR: visual bayesian personalized ranking from implicit feedback. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 30, No. 1).
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web (pp. 173-182).
Hu, B., Shi, C., Zhao, W. X., & Yu, P. S. (2018, July). Leveraging meta-path based context for top-n recommendation with a neural co-attention model. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1531-1540).
Hu, Y., Xiong, F., Pan, S., Xiong, X., Wang, L., & Chen, H. (2021). Bayesian personalized ranking based on multiple-layer neighborhoods. Information Sciences, 542, 156-176.
Kang, W. C., Fang, C., Wang, Z., & McAuley, J. (2017, November). Visually-aware fashion recommendation and design with generative image models. In 2017 IEEE International Conference on Data Mining (ICDM) (pp. 207-216). IEEE.
Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 426-434).
Koren, Y. (2009, June). Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447-456).
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25, 1097-1105.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791.
Li, Q., & Zheng, X. (2017). Deep collaborative autoencoder for recommender systems: a unified framework for explicit and implicit feedback. arXiv preprint arXiv:1712.09043.
Liu, S., Feng, J., Song, Z., Zhang, T., Lu, H., Xu, C., & Yan, S. (2012, October). Hi, magic closet, tell me what to wear!. In Proceedings of the 20th ACM international conference on Multimedia (pp. 619-628).
Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. Advances in neural information processing systems, 29, 289-297.
McAuley, J., Targett, C., Shi, Q., & Van Den Hengel, A. (2015, August). Image-based recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 43-52).
McLaughlin, M. R., & Herlocker, J. L. (2004, July). A collaborative filtering algorithm and evaluation metric that accurately model the user experience. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 329-336).
Mnih, A., & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances in neural information processing systems (pp. 1257-1264).
Núñez-Valdez, E. R., Quintana, D., Crespo, R. G., Isasi, P., & Herrera-Viedma, E. (2018). A recommender system based on implicit feedback for selective dissemination of ebooks. Information Sciences, 467, 87-98.
Phan, M. C., Sun, A., Tay, Y., Han, J., & Li, C. (2017, November). NeuPL: Attention-based semantic matching and pair-linking for entity disambiguation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 1667-1676).
Qiao, Z., Zhang, P., Cao, Y., Zhou, C., Guo, L., & Fang, B. (2014, June). Combining heterogenous social and geographical information for event recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28, No. 1).
Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252.
Shi, C., Hu, B., Zhao, W. X., & Philip, S. Y. (2018). Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2), 357-370.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Song, X., Feng, F., Liu, J., Li, Z., Nie, L., & Ma, J. (2017, October). Neurostylist: Neural compatibility modeling for clothing matching. In Proceedings of the 25th ACM international conference on Multimedia (pp. 753-761).
Song, X., Han, X., Li, Y., Chen, J., Xu, X. S., & Nie, L. (2019, October). GP-BPR: Personalized compatibility modeling for clothing matching. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 320-328).
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1-9).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
Wang, C. M., Wang, C. L., & Xu, L. (2013). User-adaptive Item-based collaborative filtering recommendation algorithm. Application Research of Computers, 30(12), 3606-3609.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015, June). Show, attend and tell: Neural image caption generation with visual attention. In International conference on machine learning (pp. 2048-2057). PMLR.
Ye, F., & Zhang, H. (2016, July). A collaborative filtering recommendation based on users′ interest and correlation of items. In 2016 International Conference on Audio, Language and Image Processing (ICALIP) (pp. 515-520). IEEE.
Yu, W., Zhang, H., He, X., Chen, X., Xiong, L., & Qin, Z. (2018, April). Aesthetic-based clothing recommendation. In Proceedings of the 2018 world wide web conference (pp. 649-658).
Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., ... & Han, J. (2014, February). Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM international conference on Web search and data mining (pp. 283-292).
Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens, and Lawrence Carin. Variational autoencoder for deep learning of images, labels and captions. In NIPS, pages 2352–2360, 2016.
Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., & Gao, J. (2018, April). Atrank: An attention-based user behavior modeling framework for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1). |